Category Archives: STX 1

RASFF Alert – STEC E.coli – Bovine Meat

RASFF

STEC (stx+;eae+) in bovine meat (raw material) from the Netherlands in Belgium

Research – Enterohemorrhagic Escherichia coli O157:H7 — Xuzhou City, Jiangsu Province, China, 2001–2021

China CDC

  • Summary

    What is already known about this topic?The largest and longest outbreak of diarrhea, which was complicated with hemolytic uremic syndrome (HUS) caused by enterohemorrhagic Escherichia coli (EHEC) O157:H7, occurred in Xuzhou City and its adjacent areas from 1999 to 2000 in China.

    What is added by this report?According to surveillance results from 2001 to 2021, there was a significant decrease in the isolation rate of O157:H7, and cattle and sheep remained the primary hosts. However, non-Shiga toxin-producing O157:H7 emerged as the dominant strain, with stx2+stx1– strains following closely behind.

    What are the implications for public health practice?National surveillance of O157:H7 effectively serves as an early warning system and guidance for assessing the intensity and trend of disease epidemics. It is crucial to raise awareness of the public health risks associated with Shiga toxin-producing E. coli.

Research – Classification and ranking of shigatoxin-producing Escherichia coli (STEC) genotypes detected in food based on potential public health impact using clinical data

Science Direct

Abstract

Risk classification and management of shigatoxin-producing E. coli (STEC) isolated from food has been hampered by gaps in knowledge about the properties that determine the extent to which different subtypes of STEC can cause severe disease. Data on the proportion of infected human cases being affected by severe illness enables an evaluation of existing approaches for classifying STEC strains and the development of a new public health based approach. Evaluations show that existing approaches do not unequivocally classify different STEC variants according to their ability to cause severe disease. A new approach for ranking of STEC genotypes, combining the estimated probability of the strain to cause severe illness with the public health burden associated with the illness in terms of DALY per case, address these limitations. The result is a list of STEC genotypes in descending order of potential public health burden per case. The approach is risk based in considering the probability and consequences following infection (severe illness), and can support transparent risk management. This is illustrated by, arbitrarily, separating the ranked list of genotypes into classes based on the potential public health burden, and by characterising collections of strains isolated from different foods into different classes. Further, the classification of food samples as satisfactory or not based on the cost in terms of proportion of food being rejected and the benefit in terms of the proportion of strains causing severe illness (HUS) that are being captured is demonstrated using this approach.

RASFF Alerts – STEC E.coli – Raw Milk Goat Cheese – Beef Carpaccio

RASFF

Possible STEC (stx+;eae+) in raw milk goat cheese from Belgium in Germany

RASFF

STEC in beef carpaccio from the Netherlands in Belgium

 

RASFF Alert – STEC E.coli – Veal Burger

RASFF

STEC (stx+;eae+) in veal burger from Belgium in France, Italy Germany and Spain

Research – Occurrence and Characteristics of Escherichia albertii in Wild Birds and Poultry Flocks in Switzerland

MDPI

Escherichia albertii, a zoonotic pathogen, has sporadically been associated with infectious diarrhea in humans. Poultry and wild birds are considered potential reservoirs. We assessed the occurrence of E. albertii in 280 fecal samples from wild birds (n = 130) and pooled fecal samples collected at slaughterhouse level from poultry flocks (n = 150) in Switzerland. Using an E. albertii-specific PCR targeting the Eacdt gene, 23.8% (31/130) of the samples from wild birds, but not from the pooled poultry fecal samples, tested positive for Eacdt. The positive samples originated from 11 bird species belonging to eight families. Strain isolation was attempted on the PCR-positive samples by subculturing the broth cultures onto xylose–MacConkey plates. Isolation was possible on 12 of the 31 Eacdt-PCR-positive samples. Whole-genome sequencing revealed that the strains belonged to nine distinct sequence types, with ST13420 and ST5967 being represented by two and three isolates, respectively. All strains harbored the eae gene, while two strains were also positive for stx2f. Our study thus shows that E. albertii is present in the Swiss wild bird population, which can potentially act as a source of this pathogen to humans, other animals, and the environment. View Full-Text

Research – Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia

MDPI

A survey on prevalence and number of Shiga toxin-producing Escherichia (E.) coli (STEC) in animal feed was carried out over a period of nine years in the Republic of Croatia. A total of 1688 feed samples were collected from feed factories and poultry farms. Analysis included two standard procedures: sample enrichment and (a) immunomagnetic separation and plating on two selective media; or (b) plating on two selective media. Confirmation of STEC included morphological examination, biochemical tests, serotyping, and polymerase chain reaction. Morphological and biochemical characterization revealed 629 E. coli strains. Further serological screening method revealed 78 STEC and EPEC serotypes, while only 27 strains were confirmed as STEC with PCR. All positive samples (1.6%) originated from poultry farms and contained combination of virulence genes: eaeA, stx1, and/or stx2. Since the presence of stx (especially stx2) and eae are identified as risk factors for development of severe diseases in humans, results of this survey indicate that avian sources of STEC infections might be one of those “undefined sources” of human illnesses. Further research is necessary for evaluation of risks posed by contaminated feed, poultry, and environment.

USA – What you need to know about E. coli O157:H7 and its complications during an Outbreak

Food Poison Journal

E. coli O157:H7 is one of thousands of serotypes of Escherichia coli.

E. coli O157:H7 was first recognized as a pathogen in 1982 during an investigation into an outbreak of haemorrhagic colitis associated with consumption of hamburgers from a fast-food chain restaurant. Retrospective examination of more than three thousand E. coli cultures obtained between 1973 and 1982 found only one isolate with serotype O157:H7, and that was a case in 1975. In the ten years that followed, there were approximately thirty outbreaks recorded in the United States. This number is likely misleading, however, because E. coli O157:H7 infections did not become a reportable disease in any state until 1987, when Washington became the first state to mandate its reporting to public health authorities. Consequently, an outbreak would not be detected if it was not large enough to prompt investigation.

E. coli O157:H7’s ability to induce injury in humans is a result of its ability to produce numerous virulence factors, most notably Shiga toxin (Stx), which is one of the most potent toxins known to man. Shiga toxin has multiple variants (e.g., Stx1, Stx2, Stx2c), and acts like the plant toxin ricin by inhibiting protein synthesis in endothelial and other cells. Endothelial cells line the interior surface of blood vessels and are known to be extremely sensitive to E. coli O157:H7, which is cytotoxigenic to these cells.

RASFF Alerts – STEC E.coli – Minced Meat – Chilled Meat

RASFF

STEC (stx+;eae+) in minced meat from Belgium in Germany, Netherlands and UK

RASFF

COLI STEC IN CARNE REFRIGERATA DALL’ARGENTINA in Italy

Research – A bacteriological survey of fresh minced beef on sale at retail outlets in Scotland in 2019: three food-borne pathogens, hygiene process indicators and phenotypic antimicrobial resistance.

Journal of Food Protection

The health and economic burden of foodborne illness is high, with approximately 2.4 million cases occurring annually in the United Kingdom. A survey to understand the baseline microbial quality and prevalence of food-related hazards of fresh beef mince on retail sale could inform risk assessment, management and communication to ensure the safety of this commodity. In such a survey, a two-stage sampling design was used to reflect variations in population density and the market share of five categories of retail outlets in Scotland.  From January to December 2019, 1009 fresh minced beef samples were collected from 15 Geographic Areas. The microbial quality of each sample was assessed using Aerobic Colony Count (ACC) and generic E. coli count. Samples were cultured for Campylobacter and Salmonella and PCR was used to detect target genes (stx1 all variants, stx2 a-g, and rfbO157) for Shiga toxin-producing Escherichia coli (STEC). The presence of viable E. coli O157 and STEC in samples with a positive PCR signal was confirmed via culture and isolation. Phenotypic antimicrobial sensitivity patterns of cultured pathogens and 100 generic E. coli isolates were determined, mostly via disc diffusion. The median ACC and generic E. coli counts were 6.4 x 105 (Inter-quartile range (IQR):6.9 x 104 to 9.6 x 106) and <10 cfu per gram (IQR:<10 to 10) of minced beef respectively. The prevalence was 0.1% (95% confidence interval C.I. 0 to 0.7%) for Campylobacter, 0.3% (95% C.I. 0 to 1%) for Salmonella, 22% (95% C.I. 20% to 25%) for PCR positive STEC and 4% (95% C.I. 2 to 5%) for culture positive STEC. The evidence for phenotypic antimicrobial resistance (AMR) detected did not give cause for concern, mainly occurring in a few generic E. coli isolates as single non-susceptibilities to first-line active substances. The low prevalence of pathogens and phenotypic AMR is encouraging but ongoing consumer food-safety education is necessary to mitigate the residual public health risk.