Category Archives: Whole Genomic Sequencing

Research – Analysis of Escherichia coli O157 strains in cattle and humans between Scotland and England & Wales: implications for human health

Microbiology Research

ABSTRACT

For the last two decades, the human infection frequency of  O157 (O157) in Scotland has been 2.5-fold higher than in England and Wales. Results from national cattle surveys conducted in Scotland and England and Wales in 2014/2015 were combined with data on reported human clinical cases from the same time frame to determine if strain differences in national populations of O157 in cattle could be associated with higher human infection rates in Scotland. Shiga toxin subtype (Stx) and phage type (PT) were examined within and between host (cattle vs human) and nation (Scotland vs England and Wales). For a subset of the strains, whole genome sequencing (WGS) provided further insights into geographical and host association. All three major O157 lineages (I, II, I/II) and most sub-lineages (Ia, Ib, Ic, IIa, IIb, IIc) were represented in cattle and humans in both nations. While the relative contribution of different reservoir hosts to human infection is unknown, WGS analysis indicated that the majority of O157 diversity in human cases was captured by isolates from cattle. Despite comparable cattle O157 prevalence between nations, strain types were localized. PT21/28 (sub-lineage Ic, Stx2a+) was significantly more prevalent in Scottish cattle [odds ratio (OR) 8.7 (2.3–33.7; <0.001] and humans [OR 2.2 (1.5–3.2); <0.001]. In England and Wales, cattle had a significantly higher association with sub-lineage IIa strains [PT54, Stx2c; OR 5.6 (1.27–33.3); =0.011] while humans were significantly more closely associated with sub-lineage IIb [PT8, Stx1 and Stx2c; OR 29 (4.9–1161); <0.001]. Therefore, cattle farms in Scotland were more likely to harbour Stx2a+O157 strains compared to farms in E and W (<0.001). There was evidence of limited cattle strain migration between nations and clinical isolates from one nation were more similar to cattle isolates from the same nation, with sub-lineage Ic (mainly PT21/28) exhibiting clear national association and evidence of local transmission in Scotland. While we propose the higher rate of O157 clinical cases in Scotland, compared to England and Wales, is a consequence of the nationally higher level of Stx2a+O157 strains in Scottish cattle, we discuss the multiple additional factors that may also contribute to the different infection rates between these nations.

Research – Genomic diversity and epidemiological significance of non-typhoidal Salmonella found in retail food collected in Norfolk, UK

Microbiology Research

ABSTRACT

Non-typhoidal  (NTS) is a major cause of bacterial gastroenteritis. Although many countries have implemented whole genome sequencing (WGS) of NTS, there is limited knowledge on NTS diversity on food and its contribution to human disease. In this study, the aim was to characterise the NTS genomes from retail foods in a particular region of the UK and assess the contribution to human NTS infections. Raw food samples were collected at retail in a repeated cross-sectional design in Norfolk, UK, including chicken (=311), leafy green (=311), pork (=311), prawn (=279) and salmon (=157) samples. Up to eight presumptive NTS isolates per positive sample underwent WGS and were compared to publicly available NTS genomes from UK human cases. NTS was isolated from chicken (9.6 %), prawn (2.9 %) and pork (1.3 %) samples and included 14 serovars, of which  Infantis and  Enteritidis were the most common. The . Enteritidis isolates were only isolated from imported chicken. No antimicrobial resistance determinants were found in prawn isolates, whilst 5.1 % of chicken and 0.64 % of pork samples contained multi-drug resistant NTS. The maximum number of pairwise core non-recombinant single nucleotide polymorphisms (SNPs) amongst isolates from the same sample was used to measure diversity and most samples had a median of two SNPs (range: 0–251). NTS isolates that were within five SNPs to clinical UK isolates belonged to specific serovars: . Enteritidis and . Infantis (chicken), and . I 4,[5],12:i- (pork and chicken). Most NTS isolates that were closely related to human-derived isolates were obtained from imported chicken, but further epidemiological data are required to assess definitively the probable source of the human cases. Continued WGS surveillance of  on retail food involving multiple isolates from each sample is necessary to capture the diversity of  and determine the relative importance of different sources of human disease.

Research – Listeria monocytogenes Strains Persisting in a Meat Processing Plant in Central Italy: Use of Whole Genome Sequencing and In Vitro Adhesion and Invasion Assays to Decipher Their Virulence Potential

MDPI

Abstract

In this study, we used both a WGS and an in vitro approach to study the virulence potential of nine Listeria monocytogenes (Lm) strains belonging to genetic clusters persisting in a meat processing plant in Central Italy. The studied clusters belonged to CC1-ST1, CC9-ST9, and CC218-ST2801. All the CC1 and CC218 strains presented the same accessory virulence genes (LIPI-3, gltA, gltB, and aut_IVb). CC1 and CC9 strains presented a gene profile similarity of 22.6% as well as CC9 and CC218 isolates. CC1 and CC218 showed a similarity of 45.2% of the same virulence profile. The hypervirulent strains of lineage I (CC1 and CC218) presented a greater ability to adhere and invade Caco-2 cells than hypovirulent ones (CC9). CC1 strains were significantly more adhesive and invasive compared with CC9 and CC218 strains, although these last CCs presented the same accessory virulence genes. No statistically significant difference was found comparing CC218 with CC9 strains. This study provided for the first time data on the in vitro adhesiveness and invasiveness of CC218-ST2801 and added more data on the virulence characteristics of CC1 and CC9. What we observed confirmed that the ability of Lm to adhere to and invade human cells in vitro is not always decipherable from its virulence gene profile.

Research – Zoonotic diseases and foodborne outbreaks on the rise, but still below pre-pandemic levels

EFSA

In 2021 there was an overall increase in reported cases of zoonotic diseases and foodborne outbreaks compared to the previous year, but levels are still well below those of the pre-pandemic years, reveals the latest annual EU One Health zoonosis report released by EFSA and ECDC.

The general drop compared to pre-pandemic years in reported cases and outbreaks is probably linked to COVID-19 control measures, which were still in place in 2021. Among the few exceptions are the number of cases for yersiniosis and those of foodborne listeriosis outbreaks, which exceeded pre-pandemic levels.

Most foodborne outbreaks (773) were caused by Salmonella, which accounted for 19.3% of the total. Foodborne outbreaks differ from overall reported disease cases in that they are events in which at least two people contract the same illness from the same contaminated food. The most common sources of salmonellosis outbreaks were eggs, egg products, and “mixed foods”, which are meals composed of various ingredients.

The number of outbreaks caused by Listeria monocytogenes (23) was the highest ever reported. This might be linked to the increased use of whole genome sequencing techniques, which allow scientists to better detect and define outbreaks.

The report also covers overall reported zoonotic disease cases, which are not necessarily linked to outbreaks. Campylobacteriosis remains the most frequently reported zoonosis, with the number of reported cases increasing to 127,840 compared to 120,946 in 2020. Meat from chicken and turkeys was the most common source. Salmonellosis was the second most reported zoonotic disease, affecting 60,050 people compared to 52,702 in 2020. The next commonly reported diseases were yersiniosis (6,789 cases), infections caused by Shigatoxin-producing E. coli (6,084 cases), and listeriosis (2,183 cases).

The report also includes data on Mycobacterium bovis/caprae,BrucellaTrichinellaEchinococcus, Toxoplasma gondii, rabies, Q fever, West Nile virus infections and tularaemia.

Research – The European Scientific Conference on Applied Infectious Disease Epidemiology (ESCAIDE)

Escaide

Abstracts

Page 71 – An Easter Surprise: Salmonella Typhimurium outbreak linked to chocolate products in the United Kingdom, 2022; a case control study

Page 72  – International outbreak of Salmonella Typhimurium linked to a chocolate factory in 2022: Belgian findings

Page 73 – Whole Genome Sequencing identified a prolonged Salmonella Poona nursery outbreak (2016-2021) in North West England, UK

Page 74 – Climate Warming and increasing Vibrio vulnificus infections in North America

Page 106 – Timely and reliable outbreak investigation using a non-probabilistic online panel as a source of controls – two parallel case-control studies investigating a Salmonella Braenderup outbreak in Germany

Page 107 – An outbreak of Escherichia coli-associated haemolytic uremic syndrome linked to consumption of an unexpected food vehicle, France 2022

Page 108 – Outbreak investigation of cholera in a peri-urban village of Panchkula district, Haryana, India, 2021

Page 109 – Cholera Outbreak Investigation, Ballo Adda Mohalla, Lucknow District, Uttar Pradesh 2021

Page 110 – Norovirus GII.3[P12] outbreak associated with the drinking-water supply in a rural area in Galicia, Spain, 2021

Page 111 – Impact of COVID-19 restrictions on the epidemiology of Cryptosporidium spp. in England and Wales

Page 149 – Monophasic Salmonella Typhimurium outbreak linked to chocolate products, Ireland, 2022

Page 151 – Successful containment of a Listeria monocytogenes outbreak caused by shredded vegetables, Hesse/Germany, 2021-2022

Page 152 – Outbreak of monophasic Salmonella Typhimurium linked to fresh small tomatoes, Sweden, 2021

Page 194 – Cholera Outbreak Investigation, Kamarhati-Municipality, North-24-Parganas District, West Bengal, India 2021

Page 195 – Botulism outbreak and response in Dangara District Tajikistan, October 2020

Page 196 – Outbreak of suspected Clostridium perfringens associated with consumption of roast beef in a restaurant, January 2022 South West England

Page 198 – Doughnuts for weight loss? A norovirus outbreak in the Australian Capital Territory, November 2021

Page 212 – Outbreak of Legionnaires’ disease linked to unregistered cooling towers, West Midlands, England, July-September 2020

 

 

Research – Integration of genomics in surveillance and risk assessment for outbreak investigation

EFSA

Keeping food safe is a challenge that needs continuous surveillance for the sake of consumers’ health. The main issue when a food‐borne pathogen outbreak occurs is represented by the identification of the source(s) of contamination. Delivering this information in a timely manner helps to control the problem, with positive outcomes for everyone, especially for the consumers, whose health is in this way preserved, and for the stakeholders involved in food production and distribution, who could face enormous economic losses if recalls or legal issues occur. Whole genome sequencing (WGS) is a tool recently implemented for the characterisation of isolates and the study of outbreaks because of its higher efficiency and faster results, when compared to traditional typing methods. Lower sequencing costs and the development of many bioinformatic tools helped its spread, and much more attention has been given to its use for outbreak investigation. It is important to reach a certain level of standardisation, though, for ensuring result reproducibility and interoperability. Moreover, nowadays it is possible, if not mandatory for Open Science Practices, to share WGS data in publicly available databases, where raw reads, assembled genomes and their corresponding metadata can be easily found and downloaded. The scope of this Fellowship was to provide the Fellow all the training necessary for successfully integrating genomics to surveillance and risk assessment of food‐borne pathogens from farm to fork.

Research – Frozen Vegetable Processing Plants Can Harbour Diverse Listeria monocytogenes Populations: Identification of Critical Operations by WGS

MDPI

Frozen vegetables have emerged as a concern due to their association with foodborne outbreaks such as the multi-country outbreak of Listeria monocytogenes serogroup IVb linked to frozen corn. The capacity of L. monocytogenes to colonize food-processing environments is well-known, making the bacteria a real problem for consumers. However, the significance of the processing environment in the contamination of frozen foods is not well established. This study aimed to identify potential contamination niches of L. monocytogenes in a frozen processing plant and characterize the recovered isolates. A frozen vegetable processing plant was monitored before cleaning activities. A total of 78 points were sampled, including frozen vegetables. Environmental samples belonged to food-contact surfaces (FCS); and non-food-contact surfaces (n-FCS). Positive L. monocytogenes samples were found in FCS (n = 4), n-FCS (n = 9), and the final product (n = 1). A whole-genome sequencing (WGS) analysis revealed two clusters belonging to serotypes 1/2a-3a and 1/2b-3b). The genetic characterization revealed the presence of four different sequence types previously detected in the food industry. The isolate obtained from the final product was the same as one isolate found in n-FCS. A multi-virulence-locus sequence typing (MVLST) analysis showed four different virulence types (VT). The results obtained highlight the relevant role that n-FCS such as floors and drains can play in spreading L. monocytogenes contamination to the final product. View Full-Text

Research – Invasive listeriosis outbreaks and salmon products: a genomic, epidemiological study

Tandfonline

Invasive listeriosis, caused by Listeria (L.) monocytogenes, is a severe foodborne infection, especially for immunocompromised individuals. The aim of our investigation was the identification and analysis of listeriosis outbreaks in Germany with smoked and graved salmon products as the most likely source of infection using whole-genome sequencing (WGS) and patient interviews.

In a national surveillance program, WGS was used for subtyping and core genome multi locus sequence typing (cgMLST) for cluster detection of L. monocytogenes isolates from listeriosis cases as well as food and environmental samples in Germany. Patient interviews were conducted to complement the molecular typing.

We identified 22 independent listeriosis outbreaks occurring between 2010 and 2021 that were most likely associated with the consumption of smoked and graved salmon products. In Germany, 228 cases were identified, of 50 deaths reported (22%) 17 were confirmed to have died from listeriosis. Many of these 22 outbreaks were cross-border outbreaks with further cases in other countries.

This report shows that smoked and graved salmon products contaminated with L. monocytogenes pose a serious risk for listeriosis infection in Germany. Interdisciplinary efforts including WGS and epidemiological investigations were essential to identifying the source of infection. Uncooked salmon products are high risk foods frequently contaminated with L. monocytogenes. In order to minimise the risk of infection for consumers, food producers need to improve hygiene measures and reduce the entry of pathogens into food processing. Furthermore, susceptible individuals should be better informed of the risk of acquiring listeriosis from consuming smoked and graved salmon products’.

CPS Funded Projects 2022 – Microbiology of Irrigation Water

CPS

Microbial characterization of irrigation waters using rapid, inexpensive and portable next generation sequencing technologies

New microbial detection approaches utilizing whole genome sequencing are being increasingly applied for tracing microbial contaminants entering the food chain. The produce industry can directly benefit from powerful new methods such as shotgun metagenomics, which allows for the rapid identification of all the bacterial, viral, fungal, and protozoan pathogens in irrigation water, soil, or food samples in a single test. Furthermore, whole genome sequencing technologies are quickly becoming less expensive, and compact sequencing technologies like the Oxford Nanopore MinION device could potentially allow testing directly on-site in produce fields or other processing facilities for food safety surveillance programs. However, the application of these new whole genome sequencing technologies and approaches need to be verified and validated for use by the produce industry. The goal of this project is to investigate two technologies that offer slightly different approaches for pathogen detection, to identify the benefits and limitations of each, verify the results, and validate their applications by the produce industry for use in rapid pathogen detection in agricultural waters. The results of this study will provide recommendations, protocols and guidelines to the produce industry regarding the proper implementation of these technologies for pathogen surveillance.

Denmark – Listeria outbreak has sickened 9 in Denmark

Food Safety News

Danish officials are investigating a years-long outbreak of Listeria infections that has affected nine people from 2018 through this month.

The Statens Serum Institut (SSI), Danish Veterinary and Food Administration (Fødevarestyrelsen) and DTU Food Institute are trying to find the source of the infections.

The same type of Listeria monocytogenes has been found in nine people from late 2018 to November 2021. The four patients this year have all only recently become ill. Two people fell sick in both 2018 and 2019 and one case was recorded in 2020.

Among those sick are seven women aged from 35 to 95 years old and two children younger than age 5. They live all over the country. All nine Danish patients have been hospitalized but there have not been any deaths.

Whole genome sequencing (WGS) showed samples from outbreak patients to be closely related, which means it is likely they came from the same source.