Archives
-
Join 341 other subscribers
KSWFoodWorld
Blog Stats
- 427,513 Views
Category Archives: Mycobacterium
Research – Opportunistic Pathogens in Drinking Water Distribution Systems—A Review
In contrast to “frank” pathogens, like Salmonella entrocolitica, Shigella dysenteriae, and Vibrio cholerae, that always have a probability of disease, “opportunistic” pathogens are organisms that cause an infectious disease in a host with a weakened immune system and rarely in a healthy host. Historically, drinking water treatment has focused on control of frank pathogens, particularly those from human or animal sources (like Giardia lamblia, Cryptosporidium parvum, or Hepatitis A virus), but in recent years outbreaks from drinking water have increasingly been due to opportunistic pathogens. Characteristics of opportunistic pathogens that make them problematic for water treatment include: (1) they are normally present in aquatic environments, (2) they grow in biofilms that protect the bacteria from disinfectants, and (3) under appropriate conditions in drinking water systems (e.g., warm water, stagnation, low disinfectant levels, etc.), these bacteria can amplify to levels that can pose a public health risk. The three most common opportunistic pathogens in drinking water systems are Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. This report focuses on these organisms to provide information on their public health risk, occurrence in drinking water systems, susceptibility to various disinfectants, and other operational practices (like flushing and cleaning of pipes and storage tanks). In addition, information is provided on a group of nine other opportunistic pathogens that are less commonly found in drinking water systems, including Aeromonas hydrophila, Klebsiella pneumoniae, Serratia marcescens, Burkholderia pseudomallei, Acinetobacter baumannii, Stenotrophomonas maltophilia, Arcobacter butzleri, and several free-living amoebae including Naegleria fowleri and species of Acanthamoeba. The public health risk for these microbes in drinking water is still unclear, but in most cases, efforts to manage Legionella, mycobacteria, and Pseudomonas risks will also be effective for these other opportunistic pathogens. The approach to managing opportunistic pathogens in drinking water supplies focuses on controlling the growth of these organisms. Many of these microbes are normal inhabitants in biofilms in water, so the attention is less on eliminating these organisms from entering the system and more on managing their occurrence and concentrations in the pipe network. With anticipated warming trends associated with climate change, the factors that drive the growth of opportunistic pathogens in drinking water systems will likely increase. It is important, therefore, to evaluate treatment barriers and management activities for control of opportunistic pathogen risks. Controls for primary treatment, particularly for turbidity management and disinfection, should be reviewed to ensure adequacy for opportunistic pathogen control. However, the major focus for the utility’s opportunistic pathogen risk reduction plan is the management of biological activity and biofilms in the distribution system. Factors that influence the growth of microbes (primarily in biofilms) in the distribution system include, temperature, disinfectant type and concentration, nutrient levels (measured as AOC or BDOC), stagnation, flushing of pipes and cleaning of storage tank sediments, and corrosion control. Pressure management and distribution system integrity are also important to the microbial quality of water but are related more to the intrusion of contaminants into the distribution system rather than directly related to microbial growth. Summarizing the identified risk from drinking water, the availability and quality of disinfection data for treatment, and guidelines or standards for control showed that adequate information is best available for management of L. pneumophila. For L. pneumophila, the risk for this organism has been clearly established from drinking water, cases have increased worldwide, and it is one of the most identified causes of drinking water outbreaks. Water management best practices (e.g., maintenance of a disinfectant residual throughout the distribution system, flushing and cleaning of sediments in pipelines and storage tanks, among others) have been shown to be effective for control of L. pneumophila in water supplies. In addition, there are well documented management guidelines available for the control of the organism in drinking water distribution systems. By comparison, management of risks for Mycobacteria from water are less clear than for L. pneumophila. Treatment of M. avium is difficult due to its resistance to disinfection, the tendency to form clumps, and attachment to surfaces in biofilms. Additionally, there are no guidelines for management of M. avium in drinking water, and one risk assessment study suggested a low risk of infection. The role of tap water in the transmission of the other opportunistic pathogens is less clear and, in many cases, actions to manage L. pneumophila (e.g., maintenance of a disinfectant residual, flushing, cleaning of storage tanks, etc.) will also be beneficial in helping to manage these organisms as well.
Research – Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat—A Literature Survey for the Period 2012–2022
Abstract
The wild boar is an abundant game species with high reproduction rates. The management of the wild boar population by hunting contributes to the meat supply and can help to avoid a spillover of transmissible animal diseases to domestic pigs, thus compromising food security. By the same token, wild boar can carry foodborne zoonotic pathogens, impacting food safety. We reviewed literature from 2012–2022 on biological hazards, which are considered in European Union legislation and in international standards on animal health. We identified 15 viral, 10 bacterial, and 5 parasitic agents and selected those nine bacteria that are zoonotic and can be transmitted to humans via food. The prevalence of Campylobacter, Listeria monocytogenes, Salmonella, Shiga toxin-producing E. coli, and Yersinia enterocolitica on muscle surfaces or in muscle tissues of wild boar varied from 0 to ca. 70%. One experimental study reported the transmission and survival of Mycobacterium on wild boar meat. Brucella, Coxiella burnetii, Listeria monocytogenes, and Mycobacteria have been isolated from the liver and spleen. For Brucella, studies stressed the occupational exposure risk, but no indication of meat-borne transmission was evident. Furthermore, the transmission of C. burnetii is most likely via vectors (i.e., ticks). In the absence of more detailed data for the European Union, it is advisable to focus on the efficacy of current game meat inspection and food safety management systems.
Posted in Brucella melitensis, Brucellosis, Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Pathogen, Listeria, Listeria monocytogenes, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Mycobacterium, Pathogen, pathogenic, STEC, STEC E.coli, Yersinia, Zoonosis
Research – Impact of Pipe Material and Temperature on Drinking Water Microbiome and Prevalence of Legionella, Mycobacterium, and Pseudomonas Species
Abstract
In drinking water distribution systems (DWDSs), pipe material and water temperature are some of the critical factors affecting the microbial flora of water. Six model DWDSs consisting of three pipe materials (galvanized steel, copper, and PEX) were constructed. The temperature in three systems was maintained at 22 °C and the other 3 at 32 °C to study microbial and elemental contaminants in a 6-week survey using 16S rRNA next-generation sequencing (NGS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). Pipe material and temperature were preferentially linked with the composition of trace elements and the microbiome of the DWDSs, respectively. Proteobacteria was the most dominant phylum across all water samples ranging from 60.9% to 91.1%. Species richness (alpha diversity) ranking was PEX < steel ≤ copper system and elevated temperature resulted in decreased alpha diversity. Legionellaceae were omni-prevalent, while Mycobacteriaceae were more prevalent at 32 °C (100% vs. 58.6%) and Pseudomonadaceae at 22 °C (53.3% vs. 62.9%). Heterogeneity between communities was disproportionately driven by the pipe material and water temperature. The elevated temperature resulted in well-defined microbial clusters (high pseudo-F index) in all systems, with the highest impact in PEX (10.928) followed by copper (9.696) and steel (5.448). Legionellaceae and Mycobacteriaceae are preferentially prevalent in warmer waters. The results suggest that the water temperature has a higher magnitude of impact on the microbiome than the pipe material.
Posted in Contaminated water, Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Legionella, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Mycobacterium, Pseudomonas, Water, water microbiology, Water Safety
Research – Strategies for Controlling the Sporulation in Fusarium spp
Fusarium species are the most destructive phytopathogenic and toxin-producing fungi, causing serious diseases in almost all economically important plants. Sporulation is an essential part of the life cycle of Fusarium. Fusarium most frequently produces three different types of asexual spores, i.e., macroconidia, chlamydospores, and microconidia. It also produces meiotic spores, but fewer than 20% of Fusaria have a known sexual cycle. Therefore, the asexual spores of the Fusarium species play an important role in their propagation and infection. This review places special emphasis on current developments in artificial anti-sporulation techniques as well as features of Fusarium’s asexual sporulation regulation, such as temperature, light, pH, host tissue, and nutrients. This description of sporulation regulation aspects and artificial anti-sporulation strategies will help to shed light on the ways to effectively control Fusarium diseases by inhibiting the production of spores, which eventually improves the production of food plants.
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Fusarium Toxin, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, mold, Mold Toxin, Mould/Mold, Mycobacterium, Mycotoxin
Research – Prevalence of Mycobacterium bovis in milk on dairy cattle farms: An international systematic literature review and meta-analysis
Bovine tuberculosis, caused by Mycobacterium bovis (M. bovis), is a globally distributed chronic disease of animals. The bacteria can be transmitted to humans via the consumption of unpasteurised (raw) milk, thus representing an important public health risk. To investigate the risk of zoonotic transmission of M. bovis via raw milk, this study systematically reviewed published studies to estimate the prevalence of M. bovis in on-farm bulk-tank milk (BTM) and individual cow’s milk (IM) by meta-analysis.
In total, 1,339 articles were identified through seven electronic databases and initially screened using titles and abstracts. The quality of 108 potentially relevant articles was assessed using full texts, and 67 articles comprising 83 studies (76 IM and 7 BTM), were included in the meta-analysis. The prevalence of M. bovis in IM and BTM was summarised according to the diagnostic test used, and the tuberculin skin test (TST) infection status of the individual cows (for IM) or herds (for BTM). Heterogeneity was quantified using the I-squared statistic. Prediction intervals (95% PIs) were also estimated.
For IM, the overall prevalence was summarised at 5% (95%CI: 3%–7%). In TST positive cows, prevalence was summarised at 8% (95%CI: 4%–13%). For BTM, the overall prevalence independent of individual herd TST infection status was summarised at 5% (95%CI: 0%–21%).
There was considerable heterogeneity evident among the included studies, while PIs were also wide. Inconsistency in the quality of reporting was also observed resulting in missing information, such as the TST infection status of the individual animal/herd. No study reported the number of M. bovis bacteria in test-positive milk samples. Several studies reported the detection of M. tuberculosis and M. africanum in milk.
Despite international efforts to control tuberculosis, this study highlights the risk of zoonotic transmission of M. bovis via unpasteurised milk and dairy products made using raw milk.
Research – A Systematic Review on the Effectiveness of Pre-Harvest Meat Safety Interventions in Pig Herds to Control Salmonella and Other Foodborne Pathogens

This systematic review aimed to assess the effectiveness of pre-harvest interventions to control the main foodborne pathogens in pork in the European Union. A total of 1180 studies were retrieved from PubMed® and Web of Science for 15 pathogens identified as relevant in EFSA’s scientific opinion on the public health hazards related to pork (2011). The study selection focused on controlled studies where a cause–effect could be attributed to the interventions tested, and their effectiveness could be inferred. Altogether, 52 studies published from 1983 to 2020 regarding Campylobacter spp., Clostridium perfringens, Methicillin-resistant Staphylococcus aureus, Mycobacterium avium, and Salmonella spp. were retained and analysed. Research was mostly focused on Salmonella (n = 43 studies). In-feed and/or water treatments, and vaccination were the most tested interventions and were, overall, successful. However, the previously agreed criteria for this systematic review excluded other effective interventions to control Salmonella and other pathogens, like Yersinia enterocolitica, which is one of the most relevant biological hazards in pork. Examples of such successful interventions are the Specific Pathogen Free herd principle, stamping out and repopulating with disease-free animals. Research on other pathogens (i.e., Hepatitis E, Trichinella spiralis and Toxoplasma gondii) was scarce, with publications focusing on epidemiology, risk factors and/or observational studies. Overall, high herd health coupled with good management and biosecurity were effective to control or prevent most foodborne pathogens in pork at the pre-harvest level. View Full-Text
Research – Living with Legionella and Other Waterborne Pathogens
Legionella spp. and other opportunistic premise plumbing pathogens (OPPPs), including Pseudomonas aeruginosa, Mycobacterium avium, Stenotrophomonas maltophilia, and Acinetobacter baumannii, are normal inhabitants of natural waters, drinking water distribution systems and premise plumbing. Thus, humans are regularly exposed to these pathogens. Unfortunately, Legionella spp. and the other OPPPs share a number of features that allow them to grow and persist in premise plumbing. They form biofilms and are also relatively disinfectant-resistant, able to grow at low organic matter concentrations, and able to grow under stagnant conditions. Infections have been traced to exposure to premise plumbing or aerosols generated in showers. A number of measures can lead to reduction in OPPP numbers in premise plumbing, including elevation of water heater temperatures.
USA – Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States
Provision of safe drinking water in the United States is a great public health achievement. However, new waterborne disease challenges have emerged (e.g., aging infrastructure, chlorine-tolerant and biofilm-related pathogens, increased recreational water use). Comprehensive estimates of the health burden for all water exposure routes (ingestion, contact, inhalation) and sources (drinking, recreational, environmental) are needed. We estimated total illnesses, emergency department (ED) visits, hospitalizations, deaths, and direct healthcare costs for 17 waterborne infectious diseases. About 7.15 million waterborne illnesses occur annually (95% credible interval [CrI] 3.88 million–12.0 million), results in 601,000 ED visits (95% CrI 364,000–866,000), 118,000 hospitalizations (95% CrI 86,800–150,000), and 6,630 deaths (95% CrI 4,520–8,870) and incurring US $3.33 billion (95% CrI 1.37 billion–8.77 billion) in direct healthcare costs. Otitis externa and norovirus infection were the most common illnesses. Most hospitalizations and deaths were caused by biofilm-associated pathogens (nontuberculous mycobacteria, Pseudomonas, Legionella), costing US $2.39 billion annually.
At the beginning of the 20th century, diseases commonly transmitted by water, such as cholera and typhoid, were major causes of death in the United States (1). Reliable provision of treated, safe drinking water dramatically reduced the burden of these diseases and has been recognized as one of the greatest public health achievements of the 20th century (2). Despite this achievement, waterborne disease in the United States persists (3–5).
In the United States, outbreaks associated with large public drinking water systems have sharply declined in the past 40 years (3,6), likely the result of improvements in regulation and operation. However, transmission of disease via drinking water systems still occurs, often attributable to aging infrastructure, operational challenges, and the private or unregulated water systems (e.g., private wells) that serve an estimated 43 million persons (7). At the same time, the complexity and scope of water use has increased; drinking, sanitation, hygiene, cooling, and heating needs are supported by 6 million miles of plumbing inside US buildings (i.e., premise plumbing) (8,9). Premise plumbing water quality can be compromised by long water residency times, reduced disinfectant levels, and inadequate hot water temperatures, creating environments where pathogens (e.g., nontuberculous mycobacteria [NTM], Pseudomonas, and Legionella) can amplify in biofilms (10). People can be exposed to these pathogens through contact, ingestion, or inhalation of aerosols (e.g., from showerheads, building cooling towers, or decorative fountains).
As leisure time has increased, swimming pools, waterparks, water playgrounds, and hot tubs have proliferated (5). These venues rely largely on chlorination as the major barrier against disease transmission. Cryptosporidium has emerged as the major cause of outbreaks associated with treated aquatic venues because it is extremely chlorine resistant and has a low infectious dose (5,11,12). Warmer oceans have led to Vibrio-associated wound infections farther north than previously documented (13).
Estimates of the overall burden of foodborne disease in the United States, including both known and unknown agents, have been useful in directing prevention activities and setting public health goals (14,15). Quantifying the burden of infectious waterborne disease in the United States would also be beneficial.
Previous studies have attempted to estimate the burden of gastrointestinal illness (16,17) or all illness associated with drinking water (18) and untreated recreational water (19) in the United States, but the burden of disease from all water sources (drinking, recreational, environmental) and exposure routes (ingestion, contact, inhalation) has not been estimated. We present an estimate of the burden of waterborne disease in the United States that includes gastrointestinal, respiratory, and systemic disease; accounts for underdiagnosis; and includes all water sources and exposure routes.
Posted in Boil Water Notice, Bore Hole Water, Contaminated water, Cryptosporidiosis, Cryptosporidium, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Legionella, Legionnaires’ disease, microbial contamination, Microbiological Risk Assessment, Microbiology, Mycobacterium, Pseudomonas, Pseudomonas aeruginosa, Pseudomonas fluorescens, Research, Vibrio, Vibrio parahaemolyticus, Water, water microbiology, Water Safety
UK – Corleggy Cheese recalls its Cavanbert and Drumlin raw milk cheeses due to Mycobacterium bovis
Corleggy Cheese is recalling its Cavanbert and Drumlin raw cows’ milk cheeses because they were made from milk from a herd in which animals tested positive for Mycobacterium bovis. Mycobacterium bovis causes tuberculosis (TB) in cattle and consumption of contaminated dairy products can also cause human TB although such infections are rare.
Product details
| Pack size | All pack sizes |
| Best before | All best before dates up to 14/02/19 |
| Pack size | All pack sizes |
| Best before | All best before dates up to 13/03/19 |
No other Corleggy Cheese products are known to be affected.
Ireland – Recall of Cavanbert and Drumlin Cheeses due to Mycobacterium bovis
| Summary | |
|---|---|
| Category 2: | For Information |
| Alert Notification: | 2019.06 |
| Product: | Cavanbert Cheese, Drumlin Cheese, approval number: IE 1816 |
| Batch Code: | All best before dates up to 14/02/19 for Cavanbert and up to 13/03/19 for Drumlin |
| Country Of Origin: | Ireland |
Message:
Corleggy Cheese is recalling its Cavanbert and Drumlin raw cows’ milk cheeses that were made with milk from a herd in which animals tested positive for tuberculosis (TB). Mycobacterium bovis causes TB in cattle and consumption of contaminated dairy products can cause human TB. No other Corleggy Cheese products are implicated. Cavanbert Cheese and Drumlin Cheese with best before dates after 14/2/19 and 13/3/19 respectively are not subject to this recall.




