Archives
-
Join 8,366 other subscribers
KSWFoodWorld
Blog Stats
- 309,623 Views
Links
Category Archives: Technology
Research – Effect of Ultra-High-Pressure Homogenization Processing on the Microbiological, Physicochemical, and Sensory Characteristics of Fish Broth
The effect of ultra-high-pressure homogenization (UHPH) treatments at 300 MPa at inlet temperatures (Ti) between 45 and 75 °C on the microbiological, physical, and sensorial characteristics of fish broth was evaluated. Before the application of UHPH treatments, different fish broth formulations were tested, selecting the formula with the best organoleptic and nutritional characteristics and the lowest cost, containing 45% monkfish heads and rock fish in the same proportion. The microbiological shelf-life of fish broth during cold storage at 4 and 8 °C was extended by a minimum of 20 days by applying UHPH treatments at inlet temperatures (Ti) between 45 and 65 °C. Fish broth UHPH-treated at Ti = 75 °C was microbiologically sterile during storage at 4 °C, 8 °C, and room temperature. Fish broth UHPH-treated was physically stable, significantly reducing the particle size. Color showed higher luminosity and lower yellowness as the inlet temperature increased. In fish broth UHPH-treated at Ti = 75 °C, selected for its microbiological stability, no differences were observed in the nutritional composition, antioxidant activity, and sensorial perception compared to untreated fish broth. Hence, UHPH treatments showed to be an alternative to preserving fish broth with an improved microbiological shelf-life and good sensorial characteristics.
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Technology, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Technology, UHPH
Research – Emerging Method to Protect Food Crops from Carcinogenic Aflatoxins
Researchers from the U.S. Department of Agriculture’s Agricultural Research Service (USDA’s ARS) are using a bioplastic coating to naturally shield seeds from Aspergillus, a type of fungi that produces aflatoxin. Exposure to aflatoxins is a food safety issue due to the compound’s carcinogenic and other harmful effects.
In the U.S., Southern agriculture is most affected by aflatoxins, as hot, dry conditions promote Aspergillus growth and aflatoxin production. Recent science has shown, however, that the Midwestern Corn Belt may be increasingly affected in the near future due to climate change. Corn is highly susceptible to aflatoxin contamination, as are seeds, nuts, feed, stored grain, and other important crops.
The new method for mitigating aflatoxin contamination of crops involves coating seeds with a protective, innocuous strain of Aspergillus, delivered via a mixture of biodegradable, corn starch-based bioplastic and biochar. The competitive Aspergillus strain found in the coating prevents aflatoxin-producing Aspergillus from infecting the seed, and other components of the mixture create a physical barrier that prevents contamination.
Posted in Aflatoxin, Aflatoxin B1, Aspergillus, Aspergillus Toxin, Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Safety, Food Safety Management, Food Technology, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Technology
Research – Identification of Genetic Markers for the Detection of Bacillus thuringiensis Strains of Interest for Food Safety
Abstract
Bacillus thuringiensis (Bt), belonging to the Bacillus cereus (Bc) group, is commonly used as a biopesticide worldwide due to its ability to produce insecticidal crystals during sporulation. The use of Bt, especially subspecies aizawai and kurstaki, to control pests such as Lepidoptera, generally involves spraying mixtures containing spores and crystals on crops intended for human consumption. Recent studies have suggested that the consumption of commercial Bt strains may be responsible for foodborne outbreaks (FBOs). However, its genetic proximity to Bc strains has hindered the development of routine tests to discriminate Bt from other Bc, especially Bacillus cereus sensu stricto (Bc ss), well known for its involvement in FBOs. Here, to develop tools for the detection and the discrimination of Bt in food, we carried out a genome-wide association study (GWAS) on 286 complete genomes of Bc group strains to identify and validate in silico new molecular markers specific to different Bt subtypes. The analyses led to the determination and the in silico validation of 128 molecular markers specific to Bt, its subspecies aizawai, kurstaki and four previously described proximity clusters associated with these subspecies. We developed a command line tool based on a 14-marker workflow, to carry out a computational search for Bt-related markers from a putative Bc genome, thereby facilitating the detection of Bt of interest for food safety, especially in the context of FBOs.
Posted in Bacillus, Bacillus cereus, Bacillus thuringiensis , Bt, Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Technology, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Technology
Research – Microbiological and Sensorial Quality of Beef Meat (Longissimus dorsi) Marinated with Cinnamon Extract and Stored at Various Temperatures
Abstract
Meat spoilage caused by temperature abuse is a major problem for producers, retailers, and consumers that can generate large economic losses to industries. Microbial growth of Pseudomonas spp. is the main source of spoilage during storage. Cinnamon has antimicrobial properties that may potentially be used to reduce the spoilage caused by Pseudomonas. The objectives of this study were to determine the inhibitory effect of cinnamon extract (CE) against Pseudomonas aeruginosa (ATCC 27853) and evaluate the treatment of CE on meat quality during different storage temperatures (5 °C, 10 °C, 15 °C, and 25 °C). The anti-Pseudomonas result showed that 100% (w/v) CE concentration produced a 13.50 mm zone of inhibition in a disc diffusion assay. The minimum inhibitor concentration (MIC) of CE was noted at 25% (v/v), whereas the minimum bactericidal concentration (MBC) value was observed at 50% (v/v) concentration of CE. The time-kill showed the growth of P. aeruginosa decreased from 7.64 to 5.39 log CFU/mL at MIC concentration. Total phenolic content and IC50 value of the cinnamon extract was expressed as 6.72 ± 0.87 mg GAE/g extract and 0.15 mg/mL, respectively. When the meat was marinated with 50% (v/v) CE and stored at various temperatures, the total viable count (TVC) and growth of Pseudomonas spp. were lowered as compared to the control sample. However, the reduction in microbial count in all samples was influenced by the storage temperature, where the lowered microbial count was noted in the sample treated with CE and stored at 5 and 10 °C for 48 h. The pH of meat treated with or without CE ranged from pH 5.74 to 6.48. The sensory attributes of colour, texture, and overall acceptability have a significant difference, except for odour, between marinated meat and control. The results indicate that the use of cinnamon extract as the marination agent for meat could reduce the growth of Pseudomonas spp. and therefore assist in extending the shelf life of meat at 5 and 10 °C storage temperatures.
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Technology, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Pseudomonas, Pseudomonas aeruginosa, Technology
Research – Mycotoxins and Essential Oils—From a Meat Industry Hazard to a Possible Solution: A Brief Review
Abstract
The preservation of food supplies has been humankind’s priority since ancient times, and it is arguably more relevant today than ever before. Food sustainability and safety have been heavily prioritized by consumers, producers, and government entities alike. In this regard, filamentous fungi have always been a health hazard due to their contamination of the food substrate with mycotoxins. Additionally, mycotoxins are proven resilient to technological processing. This study aims to identify the main mycotoxins that may occur in the meat and meat products “Farm to Fork” chain, along with their effect on the consumers’ health, and also to identify effective methods of prevention through the use of essential oils (EO). At the same time, the antifungal and antimycotoxigenic potential of essential oils was considered in order to provide an overview of the subject. Targeting the main ways of meat products’ contamination, the use of essential oils with proven in vitro or in situ efficacy against certain fungal species can be an effective alternative if all the associated challenges are addressed (e.g., application methods, suitability for certain products, toxicity). View Full-Text
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Technology, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Mould Toxin, Mould/Mold, Mycotoxin, Research, Technology
Research – Microbial Control of Raw and Cold-Smoked Atlantic Salmon (Salmo salar) through a Microwave Plasma Treatment
Abstract
The control of the pathogenic load on foodstuffs is a key element in food safety. Particularly, seafood such as cold-smoked salmon is threatened by pathogens such as Salmonella sp. or Listeria monocytogenes. Despite strict existing hygiene procedures, the production industry constantly demands novel, reliable methods for microbial decontamination. Against that background, a microwave plasma-based decontamination technique via plasma-processed air (PPA) is presented. Thereby, the samples undergo two treatment steps, a pre-treatment step where PPA is produced when compressed air flows over a plasma torch, and a post-treatment step where the PPA acts on the samples. This publication embraces experiments that compare the total viable count (tvc) of bacteria found on PPA-treated raw (rs) and cold-smoked salmon (css) samples and their references. The tvc over the storage time is evaluated using a logistic growth model that reveals a PPA sensitivity for raw salmon (rs). A shelf-life prolongation of two days is determined. When cold-smoked salmon (css) is PPA-treated, the treatment reveals no further impact. When PPA-treated raw salmon (rs) is compared with PPA-untreated cold-smoked salmon (css), the PPA treatment appears as reliable as the cold-smoking process and retards the growth of cultivable bacteria in the same manner. The experiments are flanked by quality measurements such as color and texture measurements before and after the PPA treatment. Salmon samples, which undergo an overtreatment, solely show light changes such as a whitish surface flocculation. A relatively mild treatment as applied in the storage experiments has no further detected impact on the fish matrix.
Posted in Bacteria, bacterial contamination, Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Pathogen, Food Technology, Listeria, Listeria monocytogenes, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Risk, Microwave Plasma Treatment, Pathogen, pathogenic, Research, Salmonella, Technology
Research – Antibiofilm Efficacy of Quercetin against Vibrio parahaemolyticus Biofilm on Food-Contact Surfaces in the Food Industry
Vibrio parahaemolyticus, one of the most common foodborne pathogenic bacteria that forms biofilms, is a persistent source of concern for the food industry. The food production chain employs a variety of methods to control biofilms, although none are completely successful. This study aims to evaluate the effectiveness of quercetin as a food additive in reducing V. parahaemolyticus biofilm formation on stainless-steel coupons (SS) and hand gloves (HG) as well as testing its antimicrobial activities. With a minimum inhibitory concentration (MIC) of 220 µg/mL, the tested quercetin exhibited the lowest bactericidal action without visible growth. In contrast, during various experiments in this work, the inhibitory efficacy of quercetin at sub-MICs levels (1/2, 1/4, and 1/8 MIC) against V. parahaemolyticus was examined. Control group was not added with quercetin. With increasing quercetin concentration, swarming and swimming motility, biofilm formation, and expression levels of target genes linked to flagellar motility (flaA, flgL), biofilm formation (vp0952, vp0962), virulence (VopQ, vp0450), and quorum-sensing (aphA, luxS) were all dramatically suppressed. Quercetin (0–110 μg/mL) was investigated on SS and HG surfaces, the inhibitory effect were 0.10–2.17 and 0.26–2.31 log CFU/cm2, respectively (p < 0.05). Field emission scanning electron microscopy (FE-SEM) corroborated the findings because quercetin prevented the development of biofilms by severing cell-to-cell contacts and inducing cell lysis, which resulted in the loss of normal cell shape. Additionally, there was a significant difference between the treated and control groups in terms of motility (swimming and swarming). According to our research, quercetin produced from plants should be employed as an antibiofilm agent in the food sector to prevent the growth of V. parahaemolyticus biofilms. These results indicate that throughout the entire food production chain, bacterial targets are of interest for biofilm reduction with alternative natural food agents in the seafood industry. View Full-Text
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Technology, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Quercetin, Research, Technology, Vibrio, Vibrio parahaemolyticus
Research – Inhibitory Effect against Listeria monocytogenes of Carbon Nanoparticles Loaded with Copper as Precursors of Food Active Packaging
Human listeriosis is a serious foodborne disease of which outbreaks are occurring increasingly frequently in Europe. Around the world, different legal requirements exist to guarantee food safety. Nanomaterials are increasingly used in the food industry as inhibitors of pathogens, and carbon nanomaterials are among the most promising. In the present study, novel carbon nanoparticles loaded with copper (CNP-Cu) were prepared, and their antimicrobial activity against Listeria monocytogenes was assessed. CNPs of two sizes were synthesized and characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and electron microscopy (EM). The minimum inhibitory concentration (MIC) of CNP-Cu was determined in accordance with the available standard. To get insights into its mechanism of action, the release of copper ions into a cell media was assessed by inductively coupled plasma optical emission (ICP-OE), and the ability of loaded CNPs to generate cytotoxic reactive oxygen species (ROS) was evaluated by EPR spectroscopy. Finally, the extent of release of copper in a food simulant was assessed. The results demonstrated the antimicrobial effectiveness of CNP-Cu, with growth inhibition up to 85% and a release of copper that was more pronounced in an acidic food simulant. Overall, the results indicate CNP-Cu as a promising agent for the design of active food packaging which is able to improve food shelf-life.
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Technology, Listeria, Listeria monocytogenes, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Research, Shelf Life, Technology
Research – Eco-Friendly Edible Packaging Systems Based on Live-Lactobacillus kefiri MM5 for the Control of Listeria monocytogenes in Fresh Vegetables
Abstract
To meet consumer requirements for high quality food free of chemical additives, according to the principles of sustainability and respect for the environment, new “green” packaging solutions have been explored. The antibacterial activity of edible bioactive films and coatings, based on biomolecules from processing by-products and biomasses, added with the bacteriocin producer Lactobacillus kefiri MM5, has been determined in vegetables against L. monocytogenes NCTC 10888 (i) “in vitro” by a modified agar diffusion assay and (ii) “on food” during storage of artificially contaminated raw vegetable samples, after application of active films and coatings. Both polysaccharides-based and proteins-based films and coatings showed excellent antilisterial activity, especially at 10 and 20 days. Protein-based films displayed a strong activity against L. monocytogenes in carrots and zucchini samples (p < 0.0001). After 10 days, both polysaccharide-based and protein-based films demonstrated more enhanced activity than coatings towards the pathogen. These edible active packagings containing live probiotics can be used both to preserve the safety of fresh vegetables and to deliver a beneficial probiotic bacterial strain. The edible ingredients used for the formulation of both films and coatings are easily available, at low cost and environmental impact.
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Technology, Listeria, Listeria monocytogenes, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Research, Technology
Research – Pulsed light technology effectively kills harmful pathogens in new study
Novel food decontamination method inactivates pathogens like E. coli and Salmonella
A light-based, food sanitization technique successfully eliminated multiple harmful pathogens in a new study. The pulsed light technique shows promise as an effective alternative to the chemical, heat and water-based antimicrobial technologies commonly used in the food industry — and could be applicable more generally in sanitized environments such as hospitals, water treatment facilities and pharmaceutical plants, according to the researchers.
Posted in Decontamination Microbial, E.coli, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Pathogen, Food Technology, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Pathogen, pathogenic, Research, Salmonella, Technology