Category Archives: Bio-Preservative

Research – Foodborne Pathogenic Bacteria: Prevalence and Control—Volume I

MDPI

1. Introduction

From the farm to the dining table, foodborne pathogenic bacteria can contaminate food at any stage of the food production, processing, delivery, preparation, and consumption chain, posing a critical threat to the safety of food systems worldwide [1]. Staphylococcus aureusEscherichia coliSalmonellaListeria monocytogenesCampylobacter, and Vibrio parahaemolyticus are some of the most common foodborne pathogenic bacteria, and food products contaminated by them traverse intricate global trade networks, posing many disease risks to millions of consumers annually [2]. Foodborne diseases can result from unsafe food storage, processing, preservation, and infected workers, as well as several forms of environmental contamination, including pollution in water, soil, air, infected livestock, and animal feces [3]. Some other factors that increase the incidence of foodborne diseases include the adaptation of pathogens to new environments, the formation of biofilms, the acquisition of virulence factors, and the development of antimicrobial resistance in foodborne pathogenic bacteria [4].
To enhance the safety of our food system, the first step is to know how the food system has been, and could still be, contaminated by common pathogenic bacteria, as well as other emerging and re-emerging pathogenic bacteria. On the other hand, we need to know how these bacteria could survive different storage, processing, and preservation processes in the food system. Biofilm formation and antimicrobial resistance could explain the mechanisms of bacterial survival. However, much is unknown. Once basic information is acquired, we can prevent and control the contamination of foodborne pathogenic bacteria to keep us far away from the pathogens’ attacks.
We are pleased to present this Special Issue on “Foodborne Pathogenic Bacteria: Prevalence and Control”, which contains eleven research articles and two review articles on the detection, prevalence, growth, survival and control. In addition, this Special Issue also covered topics related to rapid detection, persistence in food processing environment, antimicrobial resistance, stress adaptation, antibacterial and antibiofilm mechanisms, etc., as alternative and sustainable innovations to prevent and control the contamination of pathogenic bacteria in the food system. We present a brief overview of each contribution.

Research – Exploring Propolis as a Sustainable Bio-Preservative Agent to Control Foodborne Pathogens in Vacuum-Packed Cooked Ham

MDPI

Abstract

The search for natural food additives makes propolis an exciting alternative due to its known antimicrobial activity. This work aims to investigate propolis’ behaviour as a nitrite substitute ingredient in cooked ham (a ready-to-eat product) when confronted with pathogenic microorganisms of food interest. The microbial evolution of Listeria monocytogenesStaphylococcus aureusBacillus cereus, and Clostridium sporogenes inoculated at known doses was examined in different batches of cooked ham. The design of a challenge test according to their shelf life (45 days), pH values, and water activity allowed the determination of the mesophilic aerobic flora, psychotropic, and acid lactic bacteria viability. The test was completed with an organoleptic analysis of the samples, considering possible alterations in colour and texture. The cooked ham formulation containing propolis instead of nitrites limited the potential growth (δ < 0.5 log10) of all the inoculated microorganisms until day 45, except for L. monocytogenes, which in turn exhibited a bacteriostatic effect between day 7 and 30 of the storage time. The sensory analysis revealed the consumer’s acceptance of cooked ham batches including propolis as a natural additive. These findings suggest the functionality of propolis as a promising alternative to artificial preservatives for ensuring food safety and reducing the proliferation risk of foodborne pathogens in ready-to-eat products.