Category Archives: Research

Research – Salmonella Typhimurium caused an unprecedentedly large foodborne outbreak in Finland in 2021 – Mixed Veg

Wiley Online

Aims

Salmonella infections are significant causes of foodborne outbreaks in the European Union. This study investigates a sudden increase in gastroenteritis patients in the hospital district of Central Finland in June 2021. The primary aim was to study the outbreak’s magnitude and source of the outbreak.

Methods and Results

Epidemiological, microbiological, environmental and traceback investigations were conducted. Over 700 persons fell ill during the outbreak caused by Salmonella Typhimurium associated with a daycare lunch. Similar S. Typhimurium was found in the patients and a vegetable mix containing iceberg lettuce, cucumber and peas served during lunch. The traceback investigation revealed that the batch information of vegetables from the wholesaler was not complete. The wholesaler had received quality complaints about the iceberg lettuce from the central kitchen. The manufacturer did not test the suspected batch for Salmonella since the production plant had given a certificate declaring it Salmonella negative.

Conclusions

The most suspect ingredient was one batch of iceberg lettuce due to quality complaints. The lettuce had not been served in two daycare centres without cases. We recommend that in order to enable thorough microbiological investigation, institutional kitchens store the food samples separately as part of the internal quality control and that food items should always be tested when Salmonella contamination in an outbreak is suspected.

Impacts

  • The largest Salmonella Typhimurium outbreak in the European Union in 2021 was linked to a vegetable mix served at daycare centres in Finland.
  • Food samples should be stored separately for possible outbreak investigation and tested when an outbreak is suspected.
  • Collaboration between healthcare and environmental health authorities in investigating and managing outbreaks is vital.

Research – The Hidden Risks of Rice and Flour: Brazilian Study Uncovers Alarming Mycotoxin Levels in Everyday Foods

Scitech Daily

The foods, found in the homes of Brazilian families participating in the research, were stored for future consumption. The study is the first in Brazil to use biomarkers to characterize the risk associated with mycotoxins in the diet.

Researchers from the University of São Paulo (USP) analyzed samples of flour and rice stored in homes in Ribeirão Preto, São Paulo, Brazil, and discovered high levels of fungal toxins (mycotoxins). The study, supported by FAPESP, was published in the journal Food Research International.

As the authors point out, dietary exposure to mycotoxins can trigger a range of health problems, especially in children and adolescents. The data therefore reinforce the importance of storing foods such as grains and flour in dry places and protecting them from insects to avoid the risk of contamination.

Research – Campylobacter jejuni in Vacuum Packaged Processed Turkey

Science Direct

This study evaluated the effect of vacuum packaged storage at 4°C upon survival of Campylobacter jejuni in processed turkey roll and turkey ham. Turkey ham and turkey roll samples were sliced, inoculated with C. jejuni, vacuum packaged, and stored at 4°C for up to 28 d. Three different strains of C. jejuni were evaluated. After appropriate incubation, the inoculated samples were analyzed for culturable C. jejuni. Control samples were analyzed for aerobic plate count and enterococci. Culturable C. jejuni decreased significantly during vacuum packaged storage at 4°C over time (P<0.05). A significant difference in viability existed between the three test strains used (P<0.05). Higher levels of C. jejuni were detected in the turkey roll than the turkey ham. Aerobic plate counts and enterococci increased significantly during storage (P<0.05) providing competition for C. jejuni. Though survival of C. jejuni decreased over time, greater than 500 viable cells per gram were detected with some strains for up to 28 d.

Research – Bacteria Can Transfer from Plastic Mulch to Basil and Spinach Salad Leaves

Natural Science

Key Findings

  • The University of Stirling study found that human pathogens can transfer from plastic mulch fragments to ready-to-eat crops like basil and spinach within 24 hours
  • Pathogens such as Salmonella Typhimurium and Vibrio cholerae can persist on plastic mulch fragments for up to 14 days
  • The study highlights that removing plastic fragments and washing crops may not be enough to eliminate these pathogens, stressing the need for better management practices in agriculture
Plastic pollution is increasingly found in agricultural environments, where it contaminates soil and crops. A recent study from the University of Stirling[1] examined whether human pathogens can transfer from plastic mulch fragments to ready-to-eat crop plants, posing a risk to food safety and human health. The study focused on two pathogens, Salmonella Typhimurium and Vibrio cholerae, and found that both could persist on plastic mulch fragments for 14 days and transfer to the leaves of basil and spinach within 24 hours. This finding is significant as it highlights a new pathway for pathogen contamination in fresh produce, which has been a persistent issue with severe health, economic, and social impacts[2]. The study’s results suggest that even removing plastic fragments and washing crops may not be sufficient to eliminate these pathogens, emphasizing the need for better management practices in agricultural systems that use plastic mulches. Previous research has shown that biodegradable plastic films, although more environmentally friendly, can degrade rapidly and potentially release more microplastics into the soil compared to conventional films[3]. These microplastics can alter soil microbial communities and nutrient cycling, potentially affecting plant health and crop productivity. The University of Stirling study expands on this by demonstrating that these microplastics can also serve as vectors for human pathogens, further complicating the issue. Moreover, the degradation of plastic fragments in soil is highly variable, with some commercial polymer mixtures taking up to 48 days to degrade, while biodegradable formulations can degrade completely within 32 days[4]. The incorporation of plant growth-promoting bacteria like Bacillus subtilis can even accelerate this process. However, the rapid degradation of biodegradable plastics also means they can release pathogens more quickly into the environment, posing a continuous risk. Another concern is the contamination of agricultural soils through fertilizers composted from livestock and poultry manure, which often contain microplastics[5]. These microplastics can enter the soil and potentially carry pathogens, adding another layer of complexity to managing plastic pollution in agricultural settings. The University of Stirling study underscores the urgent need to address the co-pollutant pathogen risk associated with plastic pollution in agriculture. As the demand for intensive food production grows, so does the use of plastic mulches, making it crucial to understand and mitigate the risks they pose to food safety and human health. This research calls for improved agricultural practices and further studies to develop effective strategies for managing plastic pollution and its associated risks in food production systems.

Research – Cold plasma processing for food safety

Food Safety News

 Cold plasma is an emerging food processing technology which has been shown to effectively inactivate pathogenic bacteria, viruses, parasites, and fungi. The process uses high-voltage electricity to ionize air and/or defined gas blends to create a mixture of ions, free electrons, ozone, radical species, and other reactive products. This energetic plasma, which operates near room temperature, has been tested with fruits, vegetables, nuts, meats, cheeses, poultry, seeds, powders, and other foods.

Once created at the high voltage electrodes, the cold plasma is applied to foods and food contact surfaces. Forced air can blow the cold plasma over products and surfaces, as with plasma jet systems. This allows for the varying treatment distances of irregularly shaped foods. The commodity may also be moved in and out of the plasma field, as with dielectric barrier (DBD) systems. In either case, reactive chemical species in the cold plasma break the cellular structures, DNA, and proteins of pathogens on foods, inactivating them. Efficacy is dependent on treatment intensity and duration. Combining cold plasma with chemical sanitizers, high intensity light, or other food safety interventions can provide enhanced, synergistic pathogen inactivation. Short treatments with cold plasma can induce sublethal injury in pathogens, rendering them more susceptible to another sanitizing processes.

Research – Acid Adaptation Enhances Tolerance of Escherichia coli O157:H7 to High Voltage Atmospheric Cold Plasma in Raw Pineapple Juice

MDPI

Abstract

Pathogens that adapt to environmental stress can develop an increased tolerance to some physical or chemical antimicrobial treatments. The main objective of this study was to determine if acid adaptation increased the tolerance of Escherichia coli O157:H7 to high voltage atmospheric cold plasma (HVACP) in raw pineapple juice. Samples (10 mL) of juice were inoculated with non-acid-adapted (NAA) or acid-adapted (AA) E. coli to obtain a viable count of ~7.00 log10 CFU/mL. The samples were exposed to HVACP (70 kV) for 1–7 min, with inoculated non-HVACP-treated juice serving as a control. Juice samples were analyzed for survivors at 0.1 h and after 24 h of refrigeration (4 °C). Samples analyzed after 24 h exhibited significant decreases in viable NAA cells with sub-lethal injury detected in both NAA and AA survivors (p < 0.05). No NAA survivor in juice exposed to HVACP for 5 or 7 min was detected after 24 h. However, the number of AA survivors was 3.33 and 3.09 log10 CFU/mL in juice treated for 5 and 7 min, respectively (p < 0.05). These results indicate that acid adaptation increases the tolerance of E. coli to HVACP in pineapple juice. The potentially higher tolerance of AA E. coli O157:H7 to HVACP should be considered in developing safe juice processing parameters for this novel non-thermal technology.

Catalonia – Viruses and food safety

ACSA

Albert Bosch, professor of microbiology at the University of Barcelona and member of the Scientific Advisory Committee on Food Safety, explains (in the link above) the diseases caused by viruses that can be acquired through food and how to prevent them.

The Scientific Advisory Committee for Food Safety is the advisory body on the technical and scientific aspects of food safety and quality. It is made up of fifteen experts in food safety with recognized solvency, from universities and research centers, appointed by the councilor of the department responsible for health, at the proposal of the Food Safety Steering Committee.

USA – FDA – Investigations of Foodborne Illness Outbreaks

FDA

What’s New

  • An outbreak of Salmonella Braenderup illnesses (ref # 1229) linked to a not yet identified product has been added to the table. FDA has initiated traceback.
  • For the outbreak of Salmonella Africana illnesses (ref # 1227) linked to a not yet identified product, the case count has increased from 141 to 162. FDA has initiated an inspection and sampling. FDA’s investigation is ongoing.
  • The FDA and CDC, in collaboration with state and local partners, are investigating a multistate outbreak of Salmonella Africana illnesses that may be linked to cucumbers. On June 5, 2024, FDA issued an outbreak advisory. FDA and CDC are also investigating an outbreak of Salmonella Braenderup infections that shares several similarities with the Salmonella Africana outbreak, including where and when illnesses occurred and the demographics of ill people. Investigators are working to determine whether the two outbreaks could be linked to the same food. This investigation is ongoing; the outbreak advisory and the CORE Investigation Table will be updated once additional information becomes available.

Research – Use of dishwashers fails to inactivate foodborne pathogens in home-canned model foods

Science Direct

Unlabelled Image

Abstract

Risky home canning techniques are still performed for food preservation due to limited science-based recommendations. This study aimed to evaluate the inactivation of Shiga toxin-producing Escherichia coli O157:H7, Salmonella enterica (ser. Typhimurium, Enteritidis, and Infantis) and Listeria monocytogenes during home canning with a household dishwasher. The 450 mL of blended tomato (acidic liquid food) and potato puree (non-acidic solid food) were prepared with 1.5 % salt and 25 mL vinegar as model foods in glass jars (660 mL). The two model foods were sterilized, then inoculated with separate cocktails of each pathogen at 106–107 CFU/g. The prepared jars were placed in the bottom rack of a dishwasher and subjected to the following cycles: economic (50 °C, 122 min), express (60 °C, 54 min), and intensive (70 °C, 96 min). Temperature changes in jars were monitored by using thermocouples during heat treatment. Within the center of the jars, temperatures were measured as 45 to 53 °C in blended tomato and 44 to 52 °C in potato puree during all tested dishwasher cycles, respectively. The economic cycle treatment reduced S. entericaE. coli O157:H7, and L. monocytogenes populations by 3.1, 4.6, and 4.2 log CFU/g in blended tomato (P ≤ 0.05), where a <1.0 log reduction was observed in potato puree (P > 0.05). All pathogens showed similar heat resistance during the express cycle treatment with a log reduction ranging from 4.2 to 5.0 log CFU/g in blended tomato and 0.6 to 0.7 log CFU/g in potato puree. Reduction in L. monocytogenes population was limited (0.6 log CFU/g) compared to E. coli O157:H7 (2.0 log CFU/g) and S. enterica (2.7 log CFU/g) in blended tomato during the intensive cycle treatment (P ≤ 0.05). Dishwasher cycles at manufacturer defined settings failed to adequately inactivate foodborne pathogens in model foods. This study indicates that home-canned vegetables may cause foodborne illnesses when dishwashers in home kitchens are used for heat processing.

Research – Development of Predictive Modelling for Removal of Multispecies Biofilms of Salmonella Enteritidis, Escherichia coli, and Campylobacter jejuni from Poultry Slaughterhouse Surfaces

MDPI

Abstract

Salmonella Enteritidis, Escherichia coli, and Campylobacter jejuni are among the most common foodborne pathogens worldwide, and poultry products are strongly associated with foodborne pathogen outbreaks. These pathogens are capable of producing biofilms on several surfaces used in the food processing industry, including polyethylene and stainless steel. However, studies on multi-species biofilms are rare. Therefore, this study aimed to develop predictive mathematical models to simulate the adhesion and removal of multispecies biofilms. All combinations of microorganisms resulted in biofilm formation with differences in bacterial counts. E. coli showed the greatest ability to adhere to both surfaces, followed by S. Enteritidis and C. jejuni. The incubation time and temperature did not influence adhesion. Biofilm removal was effective with citric acid and benzalkonium chloride but not with rhamnolipid. Among the generated models, 46 presented a significant coefficient of determination (R2), with the highest R2 being 0.88. These results provide support for the poultry industry in creating biofilm control and eradication programs to avoid the risk of contamination of poultry meat.