Category Archives: Enterobacteriaceae

Research – Detection of pathogenic bacteria and fungi on biometric surface of Automated Teller Machines located in Brazilian public hospital

Academic Journals

The Automated Teller Machine (ATM) is used by millions of people as an alternative to gain time instead of using traditional banking systems in Brazil and ATMs are frequently localized in São Paulo city around the hospitals. However, ATMs might be potential devices for microbial accumulation and transmission in the community. The objective of the present study was to evaluate forty-two ATMs, in two hospital areas (A and B) in São Paulo city for the presence of pathogenic fungi and bacteria. Samples were collected from biometric surfaces of the devices with sterile cotton swabs soaked in the sterile physiologic saline and were cultured on selective agar for yeasts, filamentous fungi and bacteria in the period of January 2017 to March 2018. Complementary biochemical tests were applied to confirm the bacteria and the taxonomic identification of molds was performed considering the morphological characteristics by microscopic observation. Our results suggest that the biometric surfaces in ATMs is an important environmental source of microbes, once that the genera Staphylococcus was predominant in all agencies of both hospital areas (83.3%), following of Streptococcus spp. (57%) and Enterococcus spp. (50%). The group of Enterobacteriaceae (Gram negative bacilli) were most frequent in both areas studied (57%). Seven different fungi genera were isolated from ATMs in area A and B and yeasts were predominant in all samples collected (47%), comparing with filamentous fungi (23%). We conclude that biometric ATM surfaces play an important role in microbial transmission in hospital settings, and healthcare professionals should wash and disinfect their hands carefully before touching patients.

 

RASFF Alert – Animal Feed – Enterobacteriaceae – Dog Chews

RASFF-Logo

RASFF – too high count of Enterobacteriaceae (14900 CFU/g) in dog chews from China in Sweden

RASFF Alert – Animal Feed -Enterobacteriaceae – dried grains and mealworms mix

RASFF-Logo

RASFF – too high count of Enterobacteriaceae (8200 CFU/g) in   for wild birds from Belgium in Belgium

RASFF Alerts – Enterobacteriaceae – Pseudomonas – Chopped Beef and Turkey Skewers

RASFF-Logo

RASFF – high counts of Enterobacteriaceae (38000 CFU/g) and of Pseudomonas spp. (4000000 CFU/g) in frozen chopped beef and turkey skewers from Germany in Germany

Research – Microbial quality of edible grasshoppers Ruspolia differens (Orthoptera: Tettigoniidae): From wild harvesting to fork in the Kagera Region, Tanzania

Wiley Online Library

Abstract

In Tanzania, edible Ruspolia differens are still harvested from the natural environments. In this perspective, little is known about the microbiological quality of wild harvested R. differens. This study was conducted to assess the microbiological quality of wild harvested R. differens and evaluate the efficacy of conventional processing methods in reducing microbial load. Two districts (Bukoba rural and Muleba) within the Kagera region were purposively selected for the study. Sampling was done from the same batches along the R. differens food chain as follows: (a) at harvest points in the villages, (b) after transportation to the market and plucking of wings and legs, (c) after rinsing with potable tap water, and (d) after processing using conventional methods. Generally, high microbial counts, that is, total viable aerobic count (TVC), Enterobacteriaceae, lactic acid bacteria, bacterial endospores, and yeasts and molds were observed in raw R. differenssamples. A significant increase in microbial counts after transportation and plucking was only observed for TVC, bacterial endospores, and yeasts and molds. A statistically significant reduction in all types of counts, with the exception of bacterial endospores, was observed after processing. All processed samples analyzed were devoid of salmonellae, Listeria monocytogenes, and Escherichia coli.

Practical applications

Although commonly used processing methods of Ruspolia differens were effective in reducing microbial load, bacterial endospores were hardly eliminated and could pose a health hazard to consumers; thus, improved handling of R. differens along the food chain could reduce such risks.

RASFF Alert – Animal Feed – Enterobacteriaceae – Dried Dog Food

RASFF-Logo

RASFF – too high count of Enterobacteriaceae (2.6 x 10E3) in dried dog food from China in Germany

Research – Survival of food‐borne bacterial pathogens in traditional Mediterranean anchovy products

Wiley Online Library

Abstract

The aim of this study was to investigate the survival of Salmonella Enteritidis, Staphylococcus aureus and Listeria monocytogenes in salted and marinated anchovy (Engraulis encrasicholus). Total viable counts (TVCs), lactic acid bacteria, Enterobacteriaceae, and yeasts/molds were also enumerated. Initially, TVC was as high as 5.5 log10 cfu/g, but the population dropped down to 3.2 and 2.2 log10 CFU/g for salted and marinated anchovy, respectively. S. aureus was the most salt‐tolerant and L. monocytogenes was the most acid‐tolerant microorganism. A biphasic inactivation of S. Enteriditis and L. monocytogenes was apparent during the 8‐hr marination process, implying adaptation and resistance to low pH. Results suggest that salting or marinating of anchovy creates an environment in which pathogenic bacteria are inactivated. However, inherent resistance or possible adaptation to stresses can result to prolonged inactivation times; hence it is important to avoid contamination with high numbers of food‐borne pathogens.

Practical applications

Many food‐borne bacterial pathogens can survive at low pH and aw, especially in cases in which they might adapt to the imposed stresses and become resistant. Knowing the time required to reduce food‐borne pathogens is of great interest for ensuring safety of traditional seafood.