Category Archives: Antibiotic Resistance

Research – Sick pets as potential reservoirs of antibiotic-resistant bacteria in Singapore



An analysis of 186 diagnostic reports collected from a veterinary clinic in Singapore between 2014 to 2016 showed that sick companion animals can carry bacteria that are of significance to human health. Among the 186 specimens submitted, 82 showed polymicrobial growth (45%, 82/186) and in total, 359 bacteria were isolated. Of the 359 bacteria reported, 45% (162/359) were multi-drug resistant and 18% (66/359) were extended-spectrum-beta-lactamase species. Resistance to broad-spectrum antibiotics were also observed among individual species. Namely, methicillin-resistance among Staphylococcus pseudintermedius (63%, 32/51) and Staphylococcus aureus (50%, 4/8); fluoroquinolone-resistance among Escherichia coli (40%, 17/42) and carbapenem-resistance among Klebsiella pneumoniae (7%, 2/30) were noted. Our analysis suggests that sick pets may contribute to the pool of clinically relevant antibiotic-resistant bacteria and play a role in the spread of antibiotic resistance in Singapore. A more extensive study to better understand the extent of distribution and the factors affecting transmission of antibiotic-resistant bacteria to and from pets is necessary.

Research -Study cites ‘contagion’ as main factor in antimicrobial resistance levels


A new study by a team of international infectious disease researchers suggests that antibiotic consumption is not the biggest factor driving the global spread of antimicrobial resistance.

A bigger factor, according to the study, is “contagion,” the spread of antimicrobial-resistant bacteria and resistance genes in people, animals, and the environment. Although antibiotic use starts the process, the authors argue, the spread of resistant strains of bacteria—fueled by poor sanitation, weak healthcare systems with poor infection prevention and control, and bad governance—is what’s made antimicrobial resistance a global health crisis.

“Antibiotics are the ‘fire’ that starts up antibiotic resistance,” lead author Peter Collignon, PhD, a professor at the Australian National University Medical School, told CIDRAP News in an email. “But spread (eg, by water, foods, poor infection controls, etc) is the ‘wind’ that really fans the fire and lets the resistant bacteria and genes spread and go out of control.”

Research -Don’t kill, but tame the bacteria

All About Feed

Producing broiler meat with the label ‘no antibiotics ever’ is becoming a common thing in the US. In the meantime, the poultry sector fears that this leads to a less efficient system, in which it is harder to control major poultry diseases. Luckily, a new set of savvy feed additives that keep bad bacteria under control is on its way.

Salmonella Campylobacter

Poultry production under the philosophy ‘no antibiotics ever’ (NAE), is spreading like a wild fire in the US and also in some other parts of the world. Although this sounds like a good development, and it is, it also comes with challenges, both from a nutritional standpoint as well as keeping the margins and being able to sell the products. At a recent first-annual summer international poultry symposium, organised by Amlan International, the challenges and solutions for poultry producers to produce under antibiotic free systems were discussed in further detail.

Research – Molecular epidemiology of isolates with multiple mcr plasmids from a pig farm in Great Britain: the effects of colistin withdrawal in the short and long term




The environment, including farms, might act as a reservoir for mobile colistin resistance (mcr) genes, which has led to calls for reduction of usage in livestock of colistin, an antibiotic of last resort for humans.


To establish the molecular epidemiology of mcr Enterobacteriaceae from faeces of two cohorts of pigs, where one group had initially been treated with colistin and the other not, over a 5 month period following stoppage of colistin usage on a farm in Great Britain; faecal samples were also taken at ∼20 months.


mcr-1 Enterobacteriaceae were isolated from positive faeces and was WGS performed; conjugation was performed on selected Escherichia coli and colistin MICs were determined.


E. coli of diverse ST harbouring mcr-1 and multiple resistance genes were isolated over 5 months from both cohorts. Two STs, from treated cohorts, contained both mcr-1 and mcr-3 plasmids, with some isolates also harbouring multiple copies of mcr-1 on different plasmids. The mcr-1 plasmids grouped into four Inc types (X4, pO111, I2 and HI2), with mcr-3 found in IncP. Multiple copies of mcr plasmids did not have a noticeable effect on colistin MIC, but they could be transferred simultaneously to a Salmonella host in vitro. Neither mcr-1 nor mcr-3 was detected in samples collected ∼20 months after colistin cessation.


We report for the first known time on the presence in Great Britain of mcr-3 from MDR Enterobacteriaceae, which might concurrently harbour multiple copies of mcr1 on different plasmids. However, control measures, including stoppage of colistin, can successfully mitigate long-term on-farm persistence.

Research – Europe: Officials warn of the rise of carbapenem resistance, ‘We should be very concerned’

Outbreak News Today 


Infections with bacteria resistant to carbapenems, a group of highly effective antibiotics, pose a significant threat to patients and healthcare systems in all EU/EEA countries, warns ECDC in a Rapid Risk Assessment.

Resistance to carbapenems has been reported with increasing frequency and geographical spread since the beginning of the 1990s. The global rise of carbapenem resistance in a certain family of bacteria called Enterobacteriaceae, or carbapenem-resistant Enterobactericaeae (CRE), represents a threat to healthcare delivery and patient safety.

“We should be very concerned about the rise in carbapenem resistance in the EU/EEA as there are very few options for the treatment of patients with CRE infections” says Dominique Monnet, Head of ECDC’s Antimicrobial Resistance and Healthcare-Associated Infections Programme. “In recent years, the proportions of carbapenem resistance in Klebsiella pneumoniae – a type of Enterobacteriaceae – rapidly increased to high levels in Greece, Italy and Romania. The same could happen to other EU/EEA countries if appropriate measures are not taken. But the spread of CRE can likely be controlled in most countries through the implementation of appropriate prevention and control measures in hospitals and other healthcare settings.”

Research – Reports highlight Klebsiella superbug, other CRE concerns



Two teams of scientists at the annual meeting of the American Society for Microbiology (ASM) are reporting worrisome findings involving multidrug-resistant bacteria in healthcare settings.

In one study, a team led by researchers from Emory Antibiotic Resistance Center reported the first isolation of hypervirulent, multidrug-resistant Klebsiella pneumoniae in the United States. In another, researchers with the Kentucky Department for Public Health and the Centers for Disease Control and Prevention (CDC) found that a small outbreak of carbapenem-resistant infections at a Kentucky hospital in 2017 were caused by different strains and species of bacteria that carried the same drug-resistance plasmids.

Both studies highlight concerns about carbapenem-resistant Enterobacteria (CRE), which cause more than 9,000 healthcare-associated infections each year and have been dubbed “nightmare” bacteria for their resistance to several classes of antibiotics and their ability to spread quickly in healthcare settings. CRE infections, including bloodstream, wound, and urinary tract infections, are exceedingly difficult to treat and have a mortality rate of nearly 50%.

Research – Multi-drug-resistant (MDR), colistin-resistant E. coli bacteria pervasive in Vietnam village

Outbreak News Today Ecoli Istock

A new study has found that the majority of residents in a rural village of Vietnam harbored multi-drug-resistant (MDR), colistin-resistant E. coli bacteria. Colistin is typically used as a last-resort treatment when there are no other therapy options available. The research is presented at ASM Microbe, the annual meeting of the American Society for Microbiology, held from June 7th to June 11th in Atlanta, GA.

“These results revealed the dissemination of MDR colistin-resistant E. coli, harboring the colistin-resistant mobile gene mcr among commensal bacteria of residents, in a rural community in Vietnam,” said Yoshimasa Yamamoto, Ph.D., Osaka University, Osaka, Japan, presenting author on the study.

The colistin-resistant bacteria were detected in 71.4% of the residents in Nguyen Xa village in Vietnam. All the colistin-resistant isolates were identified as E. coli.