Category Archives: Antimicrobials

Research – FAO and the Republic of Korea join forces to reduce foodborne antimicrobial resistance

FAO

The Food and Agriculture Organization of the United Nations (FAO) and the Republic of Korea, through its Ministry of Food and Drug Safety (MFDS), today signed a new Framework Arrangement which establishes overarching terms and conditions that will govern the cooperation through voluntary contributions and facilitate future negotiations between MFDS and FAO.

The Arrangement focuses on food safety and standard setting, and contains a Contribution Arrangement which will help to simplify the implementation of individual projects.

The Republic of Korea will provide $10 million to help implement and monitor Codex Alimentarius international food standards, with the goal of containing and reducing foodborne antimicrobial resistance (AMR). AMR not only poses a major threat to human and animal health, but also has serious implications for food safety, food security and the economic wellbeing of millions of farming households.

The first project under the Arrangement will be implemented by the Joint FAO/WHO Centre on CODEX Food Standards and Zoonotic Diseases the FAO Division on Food Systems and Food Safety, and will focus on implementing Codex standards to support containment and reduction of foodborne AMR in six countries: Cambodia, Mongolia, Pakistan, Nepal, Bolivia and Colombia.

Signing on behalf of FAO, Deputy Director-General, Beth Bechdol, praised the Republic of Korea’s continuous interest and effort to increase cooperation with FAO and its deep commitment for the development of international food standards and to the Codex Alimentarius. “The COVID-19 pandemic has shown us how important it is to boost international food safety standards to ensure our food keeps travelling safely across borders, safeguarding food and nutritional security. We must transform our agri-food systems to make them more resilient and inclusive if we are to ensure a better food future for all.”

Since joining FAO as a recipient country in 1949, the Republic of Korea has transformed into a major G-20 economy and a dedicated FAO resource partner. The country is a long-standing Member and strong supporter of the Codex Alimentarius Commission, which sets international and regional standards, guidelines and codes of practice. The broad scope of Codex, which covers areas such as contaminants, nutrition, food hygiene, additives, antimicrobial resistance and pesticide and veterinary drug residues, makes it an essential tool to achieve food security and end hunger.

Jinseok Kim, Vice Minister of the MFDS welcomed the new Arrangement as a way to streamline and enhance the long-lasting cooperation between FAO and the Republic of Korea, and, in the years to come, as a basis for both parties to increase interventions within their joint areas of interest.

“Without global collaboration, we cannot overcome the difficulties due to the pandemic and I believe this is why we are here today: to work together,” Vice Minister Kim affirmed. “It is our responsibility to support other countries, and the most effective way to do this is through FAO, the key player in food safety in the UN.  It is essential to continue to move forward, and as of today Korea would like to play a leading role in world food safety.”

The Republic of Korea currently hosts the Codex ad hoc Intergovernmental Task Force on Antimicrobial Resistance (TFAMR), which is charged with developing science-based guidance on the management of foodborne antimicrobial resistance. The TFAMR is expected to complete its work in 2021.

In addition to hosting the TFAMR and supporting international standard development, the Republic of Korea leads by example in its own efforts to minimize and contain AMR in the food chain, and has expressed a desire to assist other countries in addressing AMR, by supporting the transition from standard-setting to the implementation of Codex guidance, with the collaboration and support of FAO.

Research- Antimicrobial effects of plant extracts against Clostridium perfringens with respect to food-relevant influencing factors

Journal of Food Protection

The application of plant extracts (PEs) could be a promising option to satisfy consumers’ demand for natural additives to inhibit growth of variable pathogenic bacteria. Thus, the aim of this study was to develop a standardized microdilution method to examine the antimicrobial effects of ten hydrophilic plant extracts against two strains of C. perfringens facing various food-relevant influencing factors. Due to the high opacity of PEs, resazurin was used as an indicator for bacterial growth instead of pellet formation. The highest value of the minimum inhibitory concentration (MIC) of the replications of each PE was defined as effective plant extract concentration (EPC), whereas the next concentration beneath the lowest MIC value was defined as the ineffective plant extract concentration (IEPC). The EPC of seven PEs: allspice, cardamom, cinnamon, clove, coriander, ginger and mace were between 0.625 – 10 g/kg, whereas extracts of caravey, nutmeg and thyme showed no antimicrobial activity up to the maximum concentration tested (10 g/kg) against C. perfringens in vitro. Two intrinsic factors, sodium chloride and sodium nitrite, displayed either synergistic/additive effects or no interaction with most PEs. By combination with PEs at its ineffective plant concentration (IEPC, 0.08 – 1.25 g/kg), MIC of NaCl and NaNO2 decreased from 25 – 50 g/kg to 6 – 25 g/kg and > 200 mg/kg to 0.2 – 100 mg/kg respectively. On the contrary, lipid (sun flower oil) at a low concentration inhibited the antimicrobial effects of all tested PEs. For extrinsic factors, only allspice, ginger and coriander could maintain their antimicrobial effects after being heated to 78 °C for 30 min. The synergistic effect between PEs and pH values (5.0 and 5.5) was also found for all PEs. The established screening method with resazurin and defining EPC and IEPC values allows the verification of antimicrobial effects of PEs under various food-relevant influencing factors in a fast and reproducible way.

Research – Prevalence, Antibiogram and Genetic Characterization of Listeria monocytogenes from Food Products in Egypt

MDPI

World Health Organization classified Listeria monocytogenes as a major notable foodborne pathogen associated with high mortality and hospitalization. The study reports the prevalence, antibiogram, virulence determination and genetic characterization of L. monocytogenes from different food products. A total of 250 food samples, fifty samples each from raw milk, ice cream, minced meat, fish fillet and sausage were collected from the Menoufiya governorate in Egypt. L. monocytogenes was detected in 17 (6.8%) of the tested food samples including minced meat (14%), fish fillet (8%), sausage (6%) and raw milk (6%). The antimicrobial susceptibility assay of 17 L. monocytogenes isolates against seventeen antibiotics belonging to eight antibiotics classes revealed a high susceptibility to norfloxacin (82.3%), amoxicillin-clavulanic acid (76.4%), cefotaxime (70.5%), erythromycin (64.6%), amoxicillin (64.6%), gentamicin (58.7%) and vancomycin (58.7%). While, high resistance was observed against oxytetracycline (76.4%), trimethoprim-sulfamethoxazole (76.4%), chloramphenicol (70.5%), doxycycline (64.6%), levofloxacin (41.2%) and azithromycin (41.2%). Of note, all L. monocytogenes isolates were multidrug-resistant. The multiplex PCR successfully amplified L. monocytogenes in all tested isolates. Screening of the five virulence-related genes revealed the hlyA and iap as the most prevalent genes followed by actA gene, however, the inlA and prfA genes were not detected in any of the studied isolates. The partial 16S rRNA gene sequencing of three L. monocytogenes isolates showed a high nucleotide similarity (99.1–99.8%) between the study isolates and various global clones, and phylogenetic analysis clustered these L. monocytogenes strains with other Listeria species including L. welshimeriL. seeligeri and L. innocua. This study demonstrates the impact of L. monocytogenes as a major contaminant of various food products and suggests more attention to the awareness and hygienic measures in the food industry. View Full-Text

France – Product reminder: LES VIGNES MARINES branded rope mussels for Dumet Island breeding France

Oulah

Product reminder: LES VIGNES MARINES branded rope mold for Dumet Island breeding France

ENCOUNTERED PROBLEM

Presence of Escherichia coli

PROPOSED SOLUTION

People who hold the product in question are asked not to consume them – and more particularly young children, pregnant women, immunocompromised people and the elderly – and to return them to the point of sale where they were purchased.

People who have consumed it and who present symptoms such as diarrhea, abdominal pain or vomiting should consult their doctor as soon as possible, mentioning this consumption and the possible link with the bacterium Escherichia coli.

In the absence of symptoms within 10 days after consuming the affected products, there is no need to worry and consult a doctor.

The E. coli bacterium is naturally present in the digestive microflora of humans and warm-blooded animals. Some strains of E. coli are pathogenic, and can be responsible in humans for various disorders ranging from mild diarrhea to more serious forms such as hemorrhagic diarrhea or severe kidney damage such as HUS, mainly in young children.

FURTHER INFORMATION

▸ Barcode
3663515862999


▸ Lot
• 20210515
• 20210516


▸ DLC – DDM
between 05/23/2021 and 05/24/2021


▸ Start date / End of marketing
From 05/18/2021 to 05/21/2021


▸ Health mark
FR 44.069.002 CE


▸ Distributors
E. Leclerc Stores


▸ Contact
customer service 0960445769


▸ Source
COOPERATIVE SUPPLY COMPANY – SCAPMAREE LECLERC

Research – Apple Juice Preservation Using Combined Nonthermal Processing and Antimicrobial Packaging.

Journal of Food Protection

This study investigated the effectiveness of pulsed electric fields (PEF) treatment (19, 23, 30 kV/cm), pulsed UV light (PL) treatment (5 to 50 s; 1.04 J/cm 2 /s), and antimicrobial packaging (AP) treatment, either individually or combined, in inactivating bacteria and in maintaining the quality of fruit juices. Apple juice samples, inoculated with Escherichia coli K12 or native mold and yeast (M&Y), were treated by a bench scale PEF and/or PL processing systems and stored in glass jars with antimicrobial caps containing 10 µl of carvacrol (AP). The reduction in microbial populations and the physicochemical properties of juice samples were determined after treatments and during storage at 10°C. The treatments included PL (5 to 50 s; 1.04 J/cm 2 /s ), PEF (19, 23, 30 kV/cm), PEF followed by PL (PEF+PL), PL followed by PEF (PL+PEF), and PEF+PL+AP. PEF treatments from 19 to 30 kV/cm (PEF19, PEF23, PEF30) achieved E. coli reduction by 2.0, 2.6 and 4.0 log CFU/ml, respectively; PL treatments for 10 to 50 seconds (PL10, PL20, PL30, PL40, PL50) achieved E. coli reduction by 0.45, 0.67, 0.76, 2.3, and 4.0 log CFU/ml, respectively. There were no significant (p>0.05) differences between the combined PL20+PEF19 and PEF19+PL20 treatments; both treatments reduced E. coli K12 populations to non-detectable levels (> 5 log reduction) after 7 days. Both PEF+PL and PEF+PL+AP treatments achieved over 5 log reduction of M&Y; however, juice samples subject to PEF+PL+AP treatment had lower M&Y counts (2.9 log) than samples subject to PEF+PL treatment (3.9 log) after 7 days. There were no significant (p > 0.05) differences in pH, acidity, total soluble solid contents among all samples after treatments. Increased PL treatment times reduced color a*, b* values, total phenolics and carotenoid contents. This study provides valuable information to juice processors for consideration and design of nonthermal pasteurization of juice products.

Research – Outbreak of ceftriaxone-resistant Salmonella enterica serotype Typhi attributed to eating chicken at hotel X, Tiruchirappalli, India, 2018

IJID Online

Background: Third-generation cephalosporin is widely used for typhoid treatment. In May 2018, India’s National Centre for Disease Control based Antimicrobial resistance surveillance network notified through Tamil Nadu State Surveillance Unit about clustering of ceftriaxone-resistant Salmonella enterica serotype Typhi cases in Tiruchirappalli city, Central Tamil Nadu. Team led by State public health department investigated to identify risk factors.

Conclusion: The cluster of ceftriaxone-resistant Salmonella Typhi was due to eating chicken gravy at hotel X in central Tamil Nadu. We recommended proper processing of chicken and continuing surveillance for ceftriaxone-resistant.

Research – Garcinia mangostana extract inhibits the attachment of chicken isolates of Listeria monocytogenes to cultured colorectal cells potentially due to a high proanthocyanidin content

Wiley Online

Listeria monocytogenes are pathogenic microorganisms and of particular concern in the poultry industry. They are frequently isolated from raw chicken products due to their ability to attach to a wide variety of food and food‐contact surfaces. The application of synthetic antimicrobial agents is often limited by potential emergence of antimicrobial resistance and regulations associated to organic poultry products. Development of natural antimicrobial agents controlling Listeria monocytogenes contamination and pathogenesis represent an alternative approach. This study screened a range of plant extracts (including those from cranberry, mangosteen, persimmon, and roselle) for their ability to affect five Listeria monocytogenes strains with respect to their bacterial surface hydrophobicity, auto‐aggregation, and attachment to cultured human colorectal cells. Results show that mangosteen extracts showed significant inhibitory effects on the attachment of Listeria monocytogenes to the cell line, potentially due to a high level of proanthocyanidin content. In addition, the plant extracts influenced bacterial auto‐aggregation (increase in most of the cases) by increasing bacterial surface hydrophobicity. These results may support future development of alternative antimicrobial agents controlling the contamination and pathogenesis of Listeria monocytogenes.

Research – Antimicrobial resistance and interspecies gene transfer in Campylobacter coli and Campylobacter jejuni isolated from food animals, poultry processing, and retail meat in North Carolina, 2018–2019

PLOS One

CDC Campy

The Center for Disease Control and Prevention identifies antimicrobial resistant (AMR) Campylobacter as a serious threat to U.S. public health due to high community burden, increased transmissibility, and limited treatability. The National Antimicrobial Resistance Monitoring System (NARMS) plays an important role in surveillance of AMR bacterial pathogens in humans, food animals and retail meats. This study investigated Ccoli and Cjejuni from live food animals, poultry carcasses at production, and retail meat in North Carolina between January 2018-December 2019. Whole genome sequencing and bioinformatics were used for phenotypic and genotypic characterization to compare AMR profiles, virulence factors associated with Guillain-Barré Syndrome (GBS) (neuABC and cst-II or cst-III), and phylogenic linkage between 541 Campylobacter isolates (Ccoli n = 343, Cjejuni n = 198). Overall, 90.4% (489/541) Campylobacter isolates tested positive for AMR genes, while 43% (233/541) carried resistance genes for three or more antibiotic classes and were classified molecularly multidrug resistant. AMR gene frequencies were highest against tetracyclines (64.3%), beta-lactams (63.6%), aminoglycosides (38.6%), macrolides (34.8%), quinolones (24.4%), lincosamides (13.5%), and streptothricins (5%). A total of 57.6% (114/198) Cjejuni carried GBS virulence factors, while three Ccoli carried the Cjejuni-like lipooligosaccharide locus, neuABC and cst-II. Further evidence of Ccoli and Cjejuni interspecies genomic exchange was observed in identical multilocus sequence typing, shared sequence type (ST) 7818 clonal complex 828, and identical species-indicator genes mapAceuE, and hipO. There was a significant increase in novel STs from 2018 to 2019 (2 in 2018 and 21 in 2019, p<0.002), illustrating variable Campylobacter genomes within food animal production. Introgression between Ccoli and Cjejuni may aid pathogen adaption, lead to higher AMR and increase Campylobacter persistence in food processing. Future studies should further characterize interspecies gene transfer and evolutionary trends in food animal production to track evolving risks to public health.

Research – Bacteria Broadly-Resistant to Last Resort Antibiotics Detected in Commercial Chicken Farms

MDPI

Resistance to last resort antibiotics in bacteria is an emerging threat to human and animal health. It is important to identify the source of these antimicrobial resistant (AMR) bacteria that are resistant to clinically important antibiotics and evaluate their potential transfer among bacteria. The objectives of this study were to (i) detect bacteria resistant to colistin, carbapenems, and β-lactams in commercial poultry farms, (ii) characterize phylogenetic and virulence markers of E. coli isolates to potentiate virulence risk, and (iii) assess potential transfer of AMR from these isolates via conjugation. Ceca contents from laying hens from conventional cage (CC) and cage-free (CF) farms at three maturity stages were randomly sampled and screened for extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter (CRA), and colistin resistant Escherichia coli (CRE) using CHROMagar™ selective media. We found a wide-spread abundance of CRE in both CC and CF hens across all three maturity stages. Extraintestinal pathogenic Escherichia coli phylogenetic groups B2 and D, as well as plasmidic virulence markers iss and iutA, were widely associated with AMR E. coli isolates. ESBL-producing Enterobacteriaceae were uniquely detected in the early lay period of both CC and CF, while multidrug resistant (MDR) Acinetobacter were found in peak and late lay periods of both CC and CF. CRA was detected in CF hens only. blaCMY was detected in ESBL-producing E. coli in CC and CF and MDR Acinetobacter spp. in CC. Finally, the blaCMY was shown to be transferrable via an IncK/B plasmid in CC. The presence of MDR to the last-resort antibiotics that are transferable between bacteria in food-producing animals is alarming and warrants studies to develop strategies for their mitigation in the environment. View Full-Text

Research – Innovative Antimicrobial Chitosan/ZnO/Ag NPs/Citronella Essential Oil Nanocomposite—Potential Coating for Grapes – Antimicrobial

MDPI

New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.