Category Archives: Bacillus Subtilis

Research – Antibacterial Effects of Phytic Acid against Foodborne Pathogens and Investigation of Its Mode of Action

Journal of Food Protection

ABSTRACT

This study investigated the antimicrobial mechanism of phytic acid (PA) and its antibacterial effects in combination with ethanol. The MIC of PA on Escherichia coli ATCC 11229, Staphylococcus aureus ATCC 6538P, Bacillus subtilis ATCC 6633, and Salmonella Typhimurium CICC 27483 were 0.24, 0.20, 0.26, and 0.28% (w/w), respectively. E. coli ATCC 11229 and S. aureus ATCC 6538P were selected to investigate the mechanism of PA by analyzing its effects at 1/2MIC and at MIC on the cell morphology, intracellular ATP, and cell membrane integrity. Environmental scanning electron microscope images revealed that PA was able to change the cell morphology and disrupt the intercellular adhesion. PA retarded bacterial growth and caused cell membrane dysfunction, which was accompanied by decreased intracellular ATP concentrations. Flow cytometry analysis further revealed that almost all the bacterial cells were damaged after treatment with PA at its MIC for 2 h. Moreover, PA has a synergistic antimicrobial ability when used in combination with ethanol. These results suggested that PA is effective in inhibiting growth of foodborne pathogens mainly by the mechanism of cell membrane damage and to provide a theoretical basis for the development of natural antimicrobial agents in the food industry.

Research – Antibacterial Effects of Phytic Acid against Foodborne Pathogens and Investigation of Its Mode of Action

Journal of Food Protection

This study investigated the antimicrobial mechanism of phytic acid (PA) and its antibacterial effects in combination with ethanol. The MIC of PA on Escherichia coli ATCC 11229, Staphylococcus aureus ATCC 6538P, Bacillus subtilis ATCC 6633, and Salmonella Typhimurium CICC 27483 were 0.24, 0.20, 0.26, and 0.28% (w/w), respectively. E. coli ATCC 11229 and S. aureus ATCC 6538P were selected to investigate the mechanism of PA by analyzing its effects at 1/2MIC and at MIC on the cell morphology, intracellular ATP, and cell membrane integrity. Environmental scanning electron microscope images revealed that PA was able to change the cell morphology and disrupt the intercellular adhesion. PA retarded bacterial growth and caused cell membrane dysfunction, which was accompanied by decreased intracellular ATP concentrations. Flow cytometry analysis further revealed that almost all the bacterial cells were damaged after treatment with PA at its MIC for 2 h. Moreover, PA has a synergistic antimicrobial ability when used in combination with ethanol. These results suggested that PA is effective in inhibiting growth of foodborne pathogens mainly by the mechanism of cell membrane damage and to provide a theoretical basis for the development of natural antimicrobial agents in the food industry.

RASFF Alert – Bacillus subtilis – Beans with Ginger

RASFF-Logo

RASFF – Bacillus subtilis (5.8*6 CFU/g) in preserved beans with ginger from China in Ireland

RASFF Alerts – Animal Feed – Bacillus subtilis – Vitamin B2

RASFF-Logo

RASFF – unauthorised genetically modified (Bacillus subtilis) bacteria in vitamine B2 80% from China in Lithuania

 

 

 

RASFF Alerts – Backdated 22/9/18 – 05/10/18 – Animal Feed – Bacillus subtilis – Vitamin B2

RASFF-Logo

RASFF-unauthorised genetically modified (Bacillus subtilis) bacteria in vitamin B2 80% from the Netherlands in Belgium