Category Archives: Klebsiella

Research – Inactivation modeling of microorganisms using organic chlorine and acetic acid solutions and estimation of growth kinetics of adhered Enterobacteriaceae to lettuce (Lactuca sativa L.)

Wiley Online

This study was aimed to evaluate the efficiency of the organic chlorine and acetic acid solutions on the inactivation of adhered cells of Escherichia coliCronobacter sakazakii and Klebsiella pneumoniae to lettuce. Besides, the growth and inactivation of K. pneumoniae adhered to lettuce was modeled. According to the findings, the use of chlorine solution (170 mg/ml of total residual chlorine) caused reductions of 1.8, 1.9, and 1.9 log for E. coliC. sakazakii, and K pneumoniae, respectively, were recorded. In this regard, the organic chloramine was more effective in controlling the adhered microorganisms while compared with 1.5% acetic acid solution, while the addition of 0.5% sodium chloride to 1.5% acetic acid solution increased microbial inactivation. K. pneumoniae RC‐34 inactivation was characterized by the presence of two sub‐populations with different resistances against the proposed sanitizers. Moreover, the growth kinetic parameters of K. pneumoniae RC‐34 adhered to lettuce leaves were very similar to that reported in the literature for nonadhered microorganisms. The predictive data generated can be valuable to assess the growth and inactivation of produce adhered microorganisms in leafy produce.

Research – Your energy-efficient washing machine could be harbouring pathogens

Science Daily 

For the first time ever, investigators have identified a washing machine as a reservoir of multidrug-resistant pathogens. The pathogens, a single clone of Klebsiella oxytoca, were transmitted repeatedly to newborns in a neonatal intensive care unit at a German children’s hospital. The transmission was stopped only when the washing machine was removed from the hospital. The research is published this week in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

Research – Effect of Sodium Hypochlorite on Biofilm-Forming Ability of Histamine-Producing Bacteria Isolated from Fish

Journal of Food Protection

ABSTRACT

Histamine poisoning occurs when temperature-abused marine fish containing elevated levels of histamine are consumed. Histamine-producing bacteria found in fish can colonize processing surfaces and form biofilms. In this study, the biofilm-forming abilities of histamine-producing bacteria from Indian mackerel (Rastrelliger kanagurta) and the effect of hypochlorite treatment on biofilm formation were studied. The isolates of this study produced histamine in the range of 471 to 2,126 ppm. The histidine decarboxylase gene hdc was detected in all isolates producing histamine except in one strain each of Psychrobacter pulmonis and Proteus vulgaris. All isolates tested in this study produced moderate biofilms under control conditions, whereas exposure to 1 and 3 ppm of sodium hypochlorite significantly enhanced biofilm formation. However, exposure to 5 ppm of sodium hypochlorite showed an inhibitory effect on biofilm formation by all the isolates except Klebsiella variicola. The results of this study suggest that histamine-producing bacteria can form stable biofilms and that this activity may be enhanced by the application of low levels of sodium hypochlorite, a phenomenon that might influence the persistence of histamine-producing bacteria in fish processing areas.

HIGHLIGHTS
  • Bacteria isolated from Indian mackerel produced histamine in the range of 471 to 2,126 ppm.

  • Histamine-producing bacteria isolated from the same fish can vary in the levels of histamine produced.

  • The hdc gene was not detected in one strain each of Psychrobacter pulmonis and Proteus vulgaris.

  • All histamine-producing bacteria formed moderate biofilms under control conditions.

  • Exposure to 1 and 3 ppm of sodium hypochlorite increased biofilm formation by histamine-producing bacteria.

Research – Lactic acid fermentation of legume seed sprouts as a method of increasing the content of isoflavones and reducing microbial contamination

Science Direct

CDC Klebsiella

Image CDC

Legume seeds and sprouts are a rich source of phytoestrogens in the form of isoflavonoids. For the first time, lactic acid fermentation of four types of legume sprouts was used to increase the content of isoflavonoids and microbiological safety. After germination, the highest content of isoflavonoids was observed in the clover and chickpea sprouts, which amounted to 1.1 g/100 g dw., whereas the lactic acid fermentation allowed the increase to as much as 5.5 g/100 g dw. The most beneficial properties were shown by fermented chickpea sprouts germinated in blue light. During fermentation the number of lactic acid bacteria increased by 2 Log10CFU/mL (LU), whereas mold decreased by 1 LU, E.coli and Klebsiellasp. by 2 LU, Salmonella sp. and Shigella sp did not occur after fermentation, similar to Staphylococcus epidermidis, while S. aureus and S. saprophyticus decreased by 3 LU and in some trials were not detected.

Research – Sick pets as potential reservoirs of antibiotic-resistant bacteria in Singapore

BiomedCentral 

 

An analysis of 186 diagnostic reports collected from a veterinary clinic in Singapore between 2014 to 2016 showed that sick companion animals can carry bacteria that are of significance to human health. Among the 186 specimens submitted, 82 showed polymicrobial growth (45%, 82/186) and in total, 359 bacteria were isolated. Of the 359 bacteria reported, 45% (162/359) were multi-drug resistant and 18% (66/359) were extended-spectrum-beta-lactamase species. Resistance to broad-spectrum antibiotics were also observed among individual species. Namely, methicillin-resistance among Staphylococcus pseudintermedius (63%, 32/51) and Staphylococcus aureus (50%, 4/8); fluoroquinolone-resistance among Escherichia coli (40%, 17/42) and carbapenem-resistance among Klebsiella pneumoniae (7%, 2/30) were noted. Our analysis suggests that sick pets may contribute to the pool of clinically relevant antibiotic-resistant bacteria and play a role in the spread of antibiotic resistance in Singapore. A more extensive study to better understand the extent of distribution and the factors affecting transmission of antibiotic-resistant bacteria to and from pets is necessary.

UK – Publication of survey of antimicrobial resistance in bacteria in chicken and pork

FSA

We have today published the results of a survey we commissioned to assess the amount of antimicrobial resistance (AMR) in bacteria in fresh pork mince and fresh and frozen chicken on sale in shops in the UK. These findings will help to establish a baseline of the occurrence, types and levels of AMR in bacteria found in these UK retail meats which will inform future surveillance on AMR in these foods.

This survey follows on from an authoritative report by a group established by the Advisory Committee on Microbiological Safety of Food (ACMSF) to advise us on research questions and potential approaches to AMR in the food chain.

The survey involved the testing of Campylobacter in chicken samples and Salmonella in pork mince samples for the occurrence of antimicrobial resistant bacteria. The survey also looked for AMR in other bacteria in both types of meat including Enterococci, Klebsiella and Escherichia coli.  Read the final report of the survey.

Research – Europe: Officials warn of the rise of carbapenem resistance, ‘We should be very concerned’

Outbreak News Today 

 

Infections with bacteria resistant to carbapenems, a group of highly effective antibiotics, pose a significant threat to patients and healthcare systems in all EU/EEA countries, warns ECDC in a Rapid Risk Assessment.

Resistance to carbapenems has been reported with increasing frequency and geographical spread since the beginning of the 1990s. The global rise of carbapenem resistance in a certain family of bacteria called Enterobacteriaceae, or carbapenem-resistant Enterobactericaeae (CRE), represents a threat to healthcare delivery and patient safety.

“We should be very concerned about the rise in carbapenem resistance in the EU/EEA as there are very few options for the treatment of patients with CRE infections” says Dominique Monnet, Head of ECDC’s Antimicrobial Resistance and Healthcare-Associated Infections Programme. “In recent years, the proportions of carbapenem resistance in Klebsiella pneumoniae – a type of Enterobacteriaceae – rapidly increased to high levels in Greece, Italy and Romania. The same could happen to other EU/EEA countries if appropriate measures are not taken. But the spread of CRE can likely be controlled in most countries through the implementation of appropriate prevention and control measures in hospitals and other healthcare settings.”

Research – Reports highlight Klebsiella superbug, other CRE concerns

CIDRAP 

 

Two teams of scientists at the annual meeting of the American Society for Microbiology (ASM) are reporting worrisome findings involving multidrug-resistant bacteria in healthcare settings.

In one study, a team led by researchers from Emory Antibiotic Resistance Center reported the first isolation of hypervirulent, multidrug-resistant Klebsiella pneumoniae in the United States. In another, researchers with the Kentucky Department for Public Health and the Centers for Disease Control and Prevention (CDC) found that a small outbreak of carbapenem-resistant infections at a Kentucky hospital in 2017 were caused by different strains and species of bacteria that carried the same drug-resistance plasmids.

Both studies highlight concerns about carbapenem-resistant Enterobacteria (CRE), which cause more than 9,000 healthcare-associated infections each year and have been dubbed “nightmare” bacteria for their resistance to several classes of antibiotics and their ability to spread quickly in healthcare settings. CRE infections, including bloodstream, wound, and urinary tract infections, are exceedingly difficult to treat and have a mortality rate of nearly 50%.

Research – A macromolecular approach to eradicate multidrug resistant bacterial infections while mitigating drug resistance onset

Nature 

 

Polymyxins remain the last line treatment for multidrug-resistant (MDR) infections. As polymyxins resistance emerges, there is an urgent need to develop effective antimicrobial agents capable of mitigating MDR. Here, we report biodegradable guanidinium-functionalized polycarbonates with a distinctive mechanism that does not induce drug resistance. Unlike conventional antibiotics, repeated use of the polymers does not lead to drug resistance. Transcriptomic analysis of bacteria further supports development of resistance to antibiotics but not to the macromolecules after 30 treatments. Importantly, high in vivo treatment efficacy of the macromolecules is achieved in MDR A. baumannii-, E. coli-, K. pneumoniae-, methicillin-resistant S. aureus-, cecal ligation and puncture-induced polymicrobial peritonitis, and P. aeruginosa lung infection mouse models while remaining non-toxic (e.g., therapeutic index—ED50/LD50: 1473 for A. baumannii infection). These biodegradable synthetic macromolecules have been demonstrated to have broad spectrum in vivo antimicrobial activity, and have excellent potential as systemic antimicrobials against MDR infections.

Research – Comparison of Predictors and Mortality Between Bloodstream Infections Caused by ESBL-Producing Escherichia coli and ESBL-Producing Klebsiella pneumoniae

Cambridge Org

OBJECTIVE

To compare the epidemiology, clinical characteristics, and mortality of patients with bloodstream infections (BSI) caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) versus ESBL-producing Klebsiella pneumoniae (ESBL-KP) and to examine the differences in clinical characteristics and outcome between BSIs caused by isolates with CTX-M versus other ESBL genotypes

METHODS

As part of the INCREMENT project, 33 tertiary hospitals in 12 countries retrospectively collected data on adult patients diagnosed with ESBL-EC BSI or ESBL-KP BSI between 2004 and 2013. Risk factors for ESBL-EC versus ESBL-KP BSI and for 30-day mortality were examined by bivariate analysis followed by multivariable logistic regression.

RESULTS

The study included 909 patients: 687 with ESBL-EC BSI and 222 with ESBL-KP BSI. ESBL genotype by polymerase chain reaction amplification of 286 isolates was available. ESBL-KP BSI was associated with intensive care unit admission, cardiovascular and neurological comorbidities, length of stay to bacteremia >14 days from admission, and a nonurinary source. Overall, 30-day mortality was significantly higher in patients with ESBL-KP BSI than ESBL-EC BSI (33.7% vs 17.4%; odds ratio, 1.64; P=.016). CTX-M was the most prevalent ESBL subtype identified (218 of 286 polymerase chain reaction-tested isolates, 76%). No differences in clinical characteristics or in mortality between CTX-M and non–CTX-M ESBLs were detected.

CONCLUSIONS

Clinical characteristics and risk of mortality differ significantly between ESBL-EC and ESBL-KP BSI. Therefore, all ESBL-producing Enterobacteriaceae should not be considered a homogeneous group. No differences in outcomes between genotypes were detected.

CLINICAL TRIALS IDENTIFIER

ClinicalTrials.gov. Identifier: NCT01764490.

Infect Control Hosp Epidemiol 2018;1–8