Category Archives: lactic acid bacteria

Research – Effect of Probiotic Lactic Acid Bacteria (LAB) on the Quality and Safety of Greek Yogurt



Greek yogurt is a strained yogurt with a high protein content that brings nutritional benefits. To enhance the functional benefits of Greek yogurt, Greek yogurt was prepared with various combinations of probiotic lactic acid bacteria (LAB) (Streptococcus thermophilusLactobacillus bulgaricusLactobacillus gasseri BNR17, and Lactobacillus plantarum HY7714). Effects of probiotic LAB on quality, sensory, and microbiological characteristics of Greek yogurt were then compared. Among samples, Greek yogurt fermented by S. thermophilus and L. bulgaricus showed the highest changes of pH and titratable acidity during 21 d of storage at 4 °C. Greek yogurt fermented with L. plantarum HY7714 had a higher viscosity than other samples. Greek yogurt fermented with S. thermophilusL. bulgaricusL. gasseri BNR17, and L. plantarum HY7714 showed superior physicochemical properties and received the highest preference score from sensory evaluation among samples. Overall, the population of enterohaemorrhagic Escherichia coli (EHEC) was more effectively reduced in Greek yogurt fermented with probiotic LAB than in commercial Greek yogurt during storage at 4, 10, and 25 °C. Thus, the addition of L. gasseri BNR17 and L. plantarum HY7714 as starter cultures could enhance the microbial safety of Greek yogurt and sensory acceptance by consumers.

Luxembourg – RECALL: 0% SUGAR SWEET CHILI SAUCE – Lactic Acid Bacteria



Potential presence of lactic acid bacteria causing the packaging to swell

Action is recalling the following product:

Last name 0% Sugar Sweet Chilli Sauce
Unity 250ml
bar code 8718836395338
Use-by date (DLC) 01/01/2024; 02/01/2024; 03/01/2024

Danger  : Abnormal development of lactic acid bacteria that can cause the packaging to swell

The development of lactic acid bacteria can cause the packaging to swell. The product itself does not generally pose a risk to public health if consumed.

The Food Safety Division advises, however, not to consume this product and to return it to the distributor. 

France – Sweet Chili Sauce 0% – 250ml – Lactic Acid Bacteria

Gov france

Identification information of the recalled product

  • Product category Feed
  • Product subcategory Soups, sauces and condiments
  • Product brand name Sweet Chili Sauce 0% – 250ml
  • Model names or references Sweet Chili Sauce 0% – 250ml
  • Identification of products
    see attached product list
  • Products List EN_Product_recall__Action_-_Chile.pdf Attachment
  • Storage temperature Product to be stored at room temperature
  • Geographic area of ​​sale Whole France
  • Distributors STOCK

Practical information regarding the recall

  • Reason for recall The reason is that a potential lactic acid bacteria infection can cause the packaging to swell. The product itself poses no risk to public health in the event of accidental consumption.

Netherlands – Safety Warning Remia Tomato Ketchup 500ml – Lactic Acid Bacteria


Remia CV retrieves the Remia Tomato Ketchup. This only concerns products purchased from Nettorama, Jan Linders, Dirk, Dekamarkt, Vomar, Plus, Coop or Picnic. The reason is a possible lactic acid bacteria contamination that causes the packaging to bulge. The product itself poses no danger to public health if consumed. Other Remia CV products are not affected by this issue and are suitable for sale and consumption.

See Remia’s website

Which product is it?

  • Remia Tomato Ketchup 500ml
  • Barcode: 8710448636977
  • Lot number: L2182
  • Best Before: 07-2023

For more information, customers can contact Remia consumer service on the toll-free telephone number 0800-0222555.


The Dutch Food and Consumer Product Safety Authority

Resaerch- Evaluation of Various Lactic Acid Bacteria and Generic E. coli as Potential Non-pathogenic Surrogates for In-Plant Validation of Biltong Dried Beef Processing


Validation studies conducted within a food processing facility using surrogate organisms could better represent the manufacturing process than controlled laboratory studies with pathogenic bacteria on precision equipment in a BSL-2 lab. The objectives of this project were to examine potential surrogate bacteria during biltong processing, conduct biltong surrogate validation lethality studies, and measure critical factors and intrinsic parameters during processing. Beef pieces (1.9 cm × 5.1 cm × 7.6 cm) were inoculated with four-strain mixtures of Carnobacterium divergens/C. gallinarumPediococcus acidilactici/P. pentosaceous, and Biotype 1 E. coli ATCC BAA (-1427, -1428, -1429, and -1430), as well as a two-strain mixture of Latilactobacillus sakei and other commercially available individual bacterial cultures (P. acidilactici Saga200/Kerry Foods; Enterococcus faecium 201224-016/Vivolac Cultures). Inoculated beef was vacuum-tumbled in marinade and dried in a humidity-controlled oven for 8–10 days (24.9 °C; 55% relative humidity). Microbial enumeration of surviving surrogate bacteria and evaluation of intrinsic factors (water activity, pH, and salt concentration) were performed post inoculation, post marination, and after 2, 4, 6, 8, and 10 days of drying. Trials were performed in duplicate replication with triplicate samples per sampling time and analyzed by one-way RM-ANOVA. Trials conducted with E. faeciumPediococcus spp., and L. sakei never demonstrated more than 2 log reduction during the biltong process. However, Carnobacterium achieved a >5 log (5.85 log) reduction over a drying period of 8 days and aligned with the reductions observed in previous trials with pathogenic bacteria (Salmonella, E. coli O157:H7, L. monocytogenes, and S. aureus) in biltong validation studies. Studies comparing resuspended freeze-dried or frozen cells vs. freshly grown cells for beef inoculation showed no significant differences during biltong processing. Carnobacterium spp. would be an effective nonpathogenic in-plant surrogate to monitor microbial safety that mimics the response of pathogenic bacteria to validate biltong processing within a manufacturer’s own facility. View Full-Text

Research – Evaluation of the safety and efficacy of lactic acid to reduce microbiological surface contamination on carcases from kangaroos, wild pigs, goats and sheep


Studies evaluating the safety and efficacy of lactic acid to reduce microbiological surface contamination from carcases of wild game (i.e. kangaroos and wild pigs) and small stock (i.e. goats and sheep) before chilling at the slaughterhouse were assessed. Wild pig and kangaroo hide‐on carcases may have been chilled before they arrive at the slaughterhouse and are treated after removal of the hides. Lactic acid solutions (2–5%) are applied to the carcases at temperatures of up to 55°C by spraying or misting. The treatment lasts 6–7 s per carcass side. The Panel concluded that: [1] the treatment is of no safety concern, provided that the lactic acid complies with the European Union specifications for food additives; [2] based on the available evidence, it was not possible to conclude on the efficacy of spraying or misting lactic acid on kangaroo, wild pig, goats and sheep carcases; [3] treatment of the above‐mentioned carcases with lactic acid may induce reduced susceptibility to the same substance, but this can be minimised; there is currently no evidence that prior exposure of food‐borne pathogens to lactic acid leads to the occurrence of resistance levels that compromise antimicrobial therapy; and [4] the release of lactic acid is not of concern for the environment, assuming that wastewaters released by the slaughterhouses are treated on‐site, if necessary, to counter the potentially low pH caused by lactic acid, in compliance with local rules.

Research – Determination of Listeria monocytogenes, competitive microflora, microbial hygiene indicators and physico-chemical parameters during the shelf-life of the typical Mediterranean style fermented sausage “Salsiccia Sarda”

Journal of Food Protection

The aim of the present study was the determination of Listeria monocytogenes , competitive microbiota, microbial hygiene indicators and physico-chemical parameters in the typical Mediterranean Style fermented sausages “Salsiccia Sarda” . A batch of “Salsiccia Sarda” (25 samples) naturally contaminated by L. monocytogenes and vacuum packaged after 24 days of ripening was included in the study. Fifteen samples stored at 8° C were analysed after 13, 90 and lastly at the end of shelf-life, after 180 days from vacuum packaging. Ten vacuum packaged samples were stored at 12°C in a domestic fridge simulating temperature abuse and were evaluated at the end of the shelf-life. Samples were subjected to physico-chemical analysis (pH and aw) and investigated for the presence and enumeration of L. monocytogenes . Competitive microbiota, Lactic Acid Bacteria (LAB) and Coagulase negative Staphylococci (CNS), and microbial hygiene indicators (Total mesophilic bacterial counts, Enterobacteriaceae, Enterococcuss spp. and Staphylococcus aureus ) were determined in all the samples. Although a decreasing trend in L. monocytogenes prevalence was observed through the shelf-life, the detection of the pathogen in fermented sausages confirms the ability of L. monocytogenes to overcome the hurdles of the manufacturing process. The results of the present study highlight the importance to carefully evaluate the “Salsiccia Sarda” production process by Food Business Operators (FBOs) in order to maintain unfavourable conditions for the growth of L. monocytogenes .

Research – Role of Lactic Acid Bacteria in Food Preservation and Safety


Fermentation of various food stuffs by lactic acid bacteria is one of the oldest forms of food biopreservation. Bacterial antagonism has been recognized for over a century, but in recent years, this phenomenon has received more scientific attention, particularly in the use of various strains of lactic acid bacteria (LAB). Certain strains of LAB demonstrated antimicrobial activity against foodborne pathogens, including bacteria, yeast and filamentous fungi. Furthermore, in recent years, many authors proved that lactic acid bacteria have the ability to neutralize mycotoxin produced by the last group. Antimicrobial activity of lactic acid bacteria is mainly based on the production of metabolites such as lactic acid, organic acids, hydroperoxide and bacteriocins. In addition, some research suggests other mechanisms of antimicrobial activity of LAB against pathogens as well as their toxic metabolites. These properties are very important because of the future possibility to exchange chemical and physical methods of preservation with a biological method based on the lactic acid bacteria and their metabolites. Biopreservation is defined as the extension of shelf life and the increase in food safety by use of controlled microorganisms or their metabolites. This biological method may determine the alternative for the usage of chemical preservatives. In this study, the possibilities of the use of lactic acid bacteria against foodborne pathogens is provided. Our aim is to yield knowledge about lactic acid fermentation and the activity of lactic acid bacteria against pathogenic microorganisms. In addition, we would like to introduce actual information about health aspects associated with the consumption of fermented products, including probiotics.

Research – Plant Extract and Essential Oil Application against Food-Borne Pathogens in Raw Pork Meat


Herbal and plant extracts are being applied for a wide range of foods against different types of food-borne pathogens. In the present study, ethanolic and aqueous extracts (2% w/v) from cranberry (Vaccinium macrocarpon) and pomegranate (Punica granatum L.) plants were applied alone or in combination with two essential oils (thyme and oregano in a concentration of 0.150 μg/g) in pork meatballs and their antimicrobial activity was estimated. The extracts exhibited promising results (aqueous and ethanolic extracts of pomegranate and cranberry in a food-compatible concentration of 2% w/v) were applied to raw pork meatball production and their antimicrobial activity was recorded versus Enterobacteriaceae, total mesophilic bacteria, yeasts/molds, Staphylococcus spp., Pseudomonas spp. and lactic acid bacteria (LAB). The outcome demonstrated that meatballs containing aqueous extracts of pomegranate were more resistant to spoilage compared to all the other samples since they were preserved for more days. The chemical profiles of plant extracts were determined through LC-QTOF/MS and the chemical composition of the essential oils applied was determined with the use of GC/MS in order to identify the substances involved in the observed antimicrobial activity. Phenolic acids (quinic acid, chlorogenic acid), monoterpenes (p-cymene, carvacrol, thymol, limonene), organic acids (citric acid) and phenols were the main constituents found in the plant extracts and essential oils applied. These extracts of plant origin could be used as natural preservatives in meat products, even in low concentrations. View Full-Text

Research – Development of Desiccation-Tolerant Probiotic Biofilms Inhibitory for Growth of Foodborne Pathogens on Stainless Steel Surfaces


Lactic acid bacteria biofilms can be used to reduce foodborne pathogen contamination in the food industry. However, studies on growth inhibition of foodborne pathogens by inducing biofilm formation of antagonistic microorganisms on abiotic surfaces are rare. We developed a desiccation-tolerant antimicrobial probiotic biofilm. Lactobacillus sakei M129-1 and Pediococcus pentosaceus M132-2 isolated from fermented Korean foods were found to exhibit broad-spectrum antibacterial activity against Bacillus cereusEscherichia coli O157:H7, Staphylococcus aureusListeria monocytogenes, and Salmonella enterica. Their biofilm levels were significantly (p < 0.05) higher on stainless steel than on polyethylene or ceramic. Biofilms of both isolates showed significantly (p < 0.05) enhanced resistance against desiccation (exposure to 43% atmospheric relative humidity) as compared with the isolates not in the biofilm form. The antimicrobial activity of the isolates was sustained in dried biofilms on stainless steel surface; the initial number of foodborne pathogens (average 7.0 log CFU/mL), inoculated on stainless steel chips containing L. sakei M129-1 or P. pentosaceus M132-2 biofilm decreased to less than 1.0 log CFU within 48 h. The lactic acid bacteria antibacterial biofilms developed in this study may be applied to desiccated environmental surfaces in food-related environments to improve microbiological food safety. View Full-Text