Category Archives: pathogenic

Research – Effect of Different Pre-Growth Temperatures on the Survival Kinetics of Salmonella enterica and Listeria monocytogenes in Fresh-Cut Salad during Refrigerated Storage

MDPI

Abstract

The effect of the pre-growth temperature of bacterial cultures on their subsequent survival kinetics in fresh-cut produce during refrigerated storage was investigated in this study. Three-strain cocktails of Listeria monocytogenes and Salmonella enterica, cultured at different growth temperatures (4, 21, and 37 °C) were inoculated on fresh-cut mixed salad and on individual produce in the mixed salad. The inoculated samples were stored at 4 °C and 80 ± 2% relative humidity (RH) for up to 72 h and the growth, survival, or death kinetics were determined at regular intervals. The results indicate that depending upon the type of pathogen tested, the pre-growth temperature(s) and the type of produce showed a significant (p ≤ 0.05) effect on the survival kinetics. Among the tested produce, mixed salad showed the highest reduction in L. monocytogenes pre-grown at 37 °C (1.33 log CFU/g) followed by red cabbage (0.56 log CFU/g), iceberg lettuce (0.52 log CFU/g), and carrot (−0.62 log CFU/g), after 72 h, respectively. In the case of Salmonella, carrot showed the highest reduction (1.07 log CFU/g for 37 °C pre-grown culture) followed by mixed salad (0.78 log CFU/g for 37 °C pre-grown culture), cabbage (0.76 log CFU/g for 21 °C pre-grown culture), and lettuce (0.65 log CFU/g for 4 °C pre-grown culture), respectively. Among the tested ComBase predictive models, the Baranyi–Roberts model better fitted the experimental data. These findings indicate that the appropriate selection of pre-growth environmental conditions is critical to better understand the kinetics of foodborne pathogens.

Research – The Impact of High Temperature on Microbial Communities in Pork and Duck Skin

MDPI

Abstract

Pork skin and duck skin are highly favored by consumers in China, and high-temperature processing methods are widely employed in cooking and food preparation. However, the influence of high-temperature treatment on the microbial communities within pork skin and duck skin remains unclear. In this study, a high-temperature treatment method simulating the cooking process was utilized to treat samples of pork skin and duck skin at temperatures ranging from 60 °C to 120 °C. The findings revealed that high-temperature treatment significantly altered the microbial communities in both pork skin and duck skin. Heat exposure resulted in a decrease in microbial diversity and induced changes in the relative abundance of specific microbial groups. In pork skin, high-temperature treatment led to a reduction in bacterial diversity and a decline in the relative abundance of specific bacterial taxa. Similarly, the relative abundance of microbial communities in duck skin also decreased. Furthermore, potential pathogenic bacteria, including Gram-positive and Gram-negative bacteria, as well as aerobic, anaerobic, and facultative anaerobic bacteria, exhibited different responses to high-temperature treatment in pork skin and duck skin. These findings highlighted the substantial impact of high-temperature processing on the composition and structure of microbial communities in pork skin and duck skin, potentially influencing food safety and quality. This study contributed to an enhanced understanding of the microbial mechanisms underlying the alterations in microbial communities during high-temperature processing of pork skin and duck skin, with significant implications for ensuring food safety and developing effective cooking techniques.

Research – Control of Salmonella in Chicken Meat by a Phage Cocktail in Combination with Propionic Acid and Modified Atmosphere Packaging

MDPI

Abstract

Salmonella contamination in poultry meat is an important food safety issue as this pathogen can lead to serious illness and economic losses worldwide. In poultry meat processing, a variety of strong bacteriostatic agents has been introduced for controlling Salmonella including bacteriophages (phages), organic acids, and modified atmosphere packaging (MAP). In our study, two selected phages including vB_SenM_P7 and vB_SenP_P32 were used in combination with propionic acid (PA) and MAP for controlling Salmonella of multiple serovars on chicken meat under storage at 4 °C. The two phages showed strong lytic activity against over 72 serovars of Salmonella tested (25.0 to 80.6%). Phages, vB_SenM_P7 and vB_SenP_P32 showed 40% and 60% survival rates, respectively, after the exposure to temperatures up to 70 °C. Both phages remained active, with nearly 100% survival at a wide range of pH (2 to 12) and 15% NaCl (w/v). The available chlorine up to 0.3% (v/v) led to a phage survival rate of 80–100%. A combination of Salmonella phage cocktail and 0.5% PA could reduce Salmonella counts in vitro by 4 log CFU/mL on day 3 whereas a phage cocktail and 0.25% PA showed a 4-log reduction on day 5 during storage at 4 °C. For the phage treatment alone, a 0.3-log reduction of Salmonella was observed on day 1 of storage at 4 °C. In the chicken meat model, treatment by a phage cocktail and PA at both concentrations in MAP conditions resulted in a complete reduction of Salmonella cells (4–5 log unit/g) on day 2 of storage whereas each single treatment under MAP conditions showed a complete cell reduction on day 4. For the meat sensory evaluation, chicken meat treated with a phage cocktail-PA (0.5%) in MAP condition showed the highest preference scores, suggesting highly acceptability and satisfactory. These findings suggest that a combined treatment using a phage cocktail and PA in MAP conditions effectively control Salmonella in poultry meat during storage at low temperature to improve the quality and safety of food.

Research – Microbial Pathogens in Aquaponics Potentially Hazardous for Human Health

MDPI

Abstract

The union of aquaculture and hydroponics is named aquaponics—a system where microorganisms, fish and plants coexist in a water environment. Bacteria are essential in processes which are fundamental for the functioning and equilibrium of aquaponic systems. Such processes are nitrification, extraction of various macro- and micronutrients from the feed leftovers and feces, etc. However, in aquaponics there are not only beneficial, but also potentially hazardous microorganisms of fish, human, and plant origin. It is important to establish the presence of human pathogens, their way of entering the aforementioned systems, and their control in order to assess the risk to human health when consuming plants and fish grown in aquaponics. Literature analysis shows that aquaponic bacteria and yeasts are mainly pathogenic to fish and humans but rarely to plants, while most of the molds are pathogenic to humans, plants, and fish. Since the various human pathogenic bacteria and fungi found in aquaponics enter the water when proper hygiene practices are not applied and followed, if these requirements are met, aquaponic systems are a good choice for growing healthy fish and plants safe for human consumption. However, many of the aquaponic pathogens are listed in the WHO list of drug-resistant bacteria for which new antibiotics are urgently needed, making disease control by antibiotics a real challenge. Because pathogen control by conventional physical methods, chemical methods, and antibiotic treatment is potentially harmful to humans, fish, plants, and beneficial microorganisms, a biological control with antagonistic microorganisms, phytotherapy, bacteriophage therapy, and nanomedicine are potential alternatives to these methods.

Research – Inactivation Kinetics of Foodborne Pathogens in Carrot Juice by High-Pressure Processing

MDPI

Abstract

In this study, Salmonella Typhimurium, Escherichia coli, and Listeria monocytogenes were separately inoculated in sterilized carrot juice and subjected to various types of high-pressure processing (HPP) at 200–600 MPa for 0.1–15 min to observe the effects of HPP on the inactivation kinetics of foodborne pathogens in carrot juice. The first-order model fits the destruction kinetics of high pressure on foodborne pathogens during the pressure hold period. An increase in pressure from 200 to 600 MPa decreased the decimal reduction time (D values) of S. Typhimurium, E. coli, and L. monocytogenes. Under pressure ≥ 400 MPa, the D values of E. coli were significantly higher than those of S. Typhimurium and L. monocytogenes, indicating that E. coli had greater resistance to high pressures than the others. The Zp values (the pressure range that causes the D values to change by 90%) of E. coliS. Typhimurium, and L. monocytogenes were 195, 175, and 170 MPa, respectively. These results indicated that L. monocytogenes and E. coli were the most and least sensitive, respectively, to pressure changes. Additionally, the three bacteria were separately inoculated into thermal-sterilized carrot juice and subjected to 200–600 MPa HPP for 3 min. The treated carrot juices were stored at 4 °C for 27 d. Following S. Typhimurium and E. coli inoculation, the bacterial counts of the control and 200 MPa treatments remained the same during the storage duration. However, they decreased for the 300 and 400 MPa treatment groups with increasing storage duration. During the storage period, no bacterial growth was observed in the 500 and 600 MPa treatments. However, the bacterial number for the control and pressure treatment groups increased with prolonged storage duration following inoculation with L. monocytogenes. Therefore, following HPP, residual L. monocytogenes continued growing stably at low temperatures. Overall, HPP could inhibit and delay the growth of S. Typhimurium and E. coli in carrot juice during cold storage, but it was ineffective at inhibiting the growth of L. monocytogenes. There was a risk of foodborne illness despite the low-temperature storage of juice. The innovation of this preliminary study is to find the impact of high pressure on the inactivate kinetics of three food pathogens in carrot juice and its practical application in simulated contaminated juice.

Research Dry-surface foodborne pathogens under scrutiny at Purdue

Purdue Edu

Maintaining sanitary conditions without using water presents special challenges

WEST LAFAYETTE, Ind. – During 2021 and 2022, national news reported on four infants being hospitalized and two dying after consuming infant formula tainted with Cronobacter sakazakii. The reports sparked the prolonged shutdown of a production plant that produced large quantities of the formula, leading to a monthslong nationwide shortage of infant formula.

The incident motivated Purdue University’s Haley Oliver to launch a project to improve the safety of low-moisture food-processing facilities. Oliver, a professor of food science, will collaborate with Old Dominion University’s Rishi Drolia on the project, which will target the C. sakazakii pathogen.

“It was a massive-scale food safety challenge that led to a food security challenge,” Oliver said.

Research – Annual report concerning Foodborne Diseases in New Zealand 2022

NZFS

Human health surveillance and its relationship to foodborne illness is essential for informing
the strategic direction that New Zealand Food Safety (NZFS) takes and regulatory measures
it puts in place to minimise foodborne illness in New Zealand and overseas consumers. The
annual ESR foodborne disease reports are critical, allowing NZFS to monitor trends in
foodborne illness in New Zealand by describing in a consistent manner evidence from case
notifications, case enquiries, outbreak investigations, and other epidemiological studies of
human enteric disease.
This report is the latest in a series providing a consistent source of data annually to monitor
trends in foodborne illness in New Zealand. The series can be found here.
When reading these reports, it is necessary to bear in mind that notified cases of illness
represent only a subset of all the cases that occur in New Zealand each year.
• Many sick individuals do not visit a GP or otherwise come to the attention of the
health system.
• Multiple factors (e.g., change in sensitivity of testing methods, proportion of human
faecal specimens being tested) affect the notification rates on top of any underlying
changes to disease incidence happening in New Zealand. Some cases notified in
New Zealand are due to exposure to a pathogen or toxin while they were overseas.
Most cases of foodborne diseases in New Zealand are sporadic, which makes attribution to a
source or event difficult. In contrast, outbreaks offer a better opportunity to identify the source
and most of the 271 outbreaks (253 cases) of potential foodborne disease in 2022 were
associated with commercial food operators and only five outbreaks in 2022 were associated
with food prepared in consumer’s homes. Despite robust investigation, some outbreaks
reported as “foodborne with an unidentified food source” could also be attributed to other
routes of transmission, such as water, animal contact, or person to person contact.
Listeriosis is perhaps the only disease fully attributable to consumption of contaminated food.
Campylobacteriosis, yersiniosis, infection by shiga toxin-producing E. coli (STEC), and
salmonellosis remain the predominant notified foodborne illnesses. Notification rates per
100,000 population are generally stable, being highest for very young children (0 to 4 years
age group) and for elderly people (70+ years)

Research – Comparison of Antibacterial Activity of Phytochemicals against Common Foodborne Pathogens and Potential for Selection of Resistance

MDPI

Abstract

Antimicrobial resistance is now commonly observed in bacterial isolates from multiple settings, compromising the efficacy of current antimicrobial agents. Therefore, there is an urgent requirement for efficacious novel antimicrobials to be used as therapeutics, prophylactically or as preservatives. One promising source of novel antimicrobial chemicals is phytochemicals, which are secondary metabolites produced by plants for numerous purposes, including antimicrobial defence. In this report, we compare the bioactivity of a range of phytochemical compounds, testing their ability to directly inhibit growth or to potentiate other antimicrobials against Salmonella enterica Typhimurium, Pseudomonas aeruginosaListeria monocytogenes, and Staphylococcus aureus. We found that nine compounds displayed consistent bioactivity either as direct antimicrobials or as potentiators. Thymol at 0.5 mg/mL showed the greatest antimicrobial effect and significantly reduced the growth of all species, reducing viable cell populations by 66.8%, 43.2%, 29.5%, and 70.2% against S. enterica Typhimurium, S. aureusP. aeruginosa, and L. monocytogenes, respectively. Selection of mutants with decreased susceptibility to thymol was possible for three of the pathogens, at a calculated rate of 3.77 × 10−8, and characterisation of S. enterica Typhimurium mutants showed a low-level MDR phenotype due to over-expression of the major efflux system AcrAB-TolC. These data show that phytochemicals can have strong antimicrobial activity, but emergence of resistance should be evaluated in any further development.

Research – Evaluation of low-energy x-rays as an alternative to chlorine washing to control internalized foodborne pathogens in lettuce

Wiley Online

Abstract

Low-energy X-rays can be used to reduce the number of pathogenic microorganisms in fresh produce, but the efficacy of this process against internalized bacteria in leafy greens has not yet been reported. The leaves of iceberg lettuce were cut into pieces and subjected to vacuum perfusion to force the foodborne pathogen cells into the intercellular spaces within the leaves. Sodium hypochlorite (200–400 ppm) washes were not effective in inactivating internalized bacterial cells from lettuce leaves. In contrast, treatment with 1.5 kGy low-energy X-rays reduced Escherichia coli O157: H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes levels by 6.89, 4.48, and 3.22 log CFU/g, respectively. Additionally, the maximum dose of X-rays did not adversely affect the color or texture of lettuce. These results suggest that low-energy X-ray treatment can be used to control internalized and surface-adhering pathogens in leafy vegetables without affecting product quality.

Research – Detection and Control of Foodborne Pathogens

MDPI

The globalization of food trade and the emergence of disease outbreaks involving several foodborne pathogens and foods has focused the attention of both the research community and consumers on food safety. Microbial contamination can involve different stages of food processing and distribution, with a potentially dramatic impact on human health and food business. Several methods, involving culture-dependent and -independent techniques, were developed to detect foodborne pathogens in the food supply chain. In this respect, gold-standard reference methods are currently available for most pathogens, but some of them are time-consuming and expensive. Moreover, routine controls carried out by manufacturers and food safety authorities are normally focused on bacteria and not on viruses and fungi, which can have a significant impact on food safety. In the European Union, the number of human cases caused by Noroviruses and other Caliciviruses increased sharply in 2021 [1]. Therefore, based on the evidence given by an increasing amount of research, control strategies show a clear trend towards molecular techniques, such as polymerase chain reaction (PCR), multiplex PCR, real-time PCR (qPCR), reverse transcriptase PCR (RT-PCR), DNA microarrays, nucleic acid sequence-based amplification (NASBA), isothermal DNA amplification techniques, and next-generation sequencing (NGS) [2]. Moreover, to expand the knowledge on the behaviour of pathogens in food environments, proteome profiling and biosensors shed light on how these microorganisms interact and prevail in food systems [3].