Category Archives: HHP

Research – Effect of High Hydrostatic Pressure Processing on the Microbiological Quality and Bacterial Diversity of Sous-Vide-Cooked Cod

MDPI

Abstract

High hydrostatic pressure (HP) is a promising method to improve the microbiological quality of sous-vide foods. Monitoring the composition and behavior of the microbial communities in foods is of most importance for the production of high-quality and safe products. High-throughput sequencing (HTS) provides advanced approaches to determine food’s microbial community composition and structure. The aim of the present study was to determine the impact of different HP treatments on the microbial load and bacterial diversity of sous-vide Atlantic cod. Sous-vide cooking at 57.1 °C for 30 min followed by HP treatment at 500 MPa for 8 min reduced viable cell counts (total aerobic mesophiles) in the cod samples below detectable levels for 45 days of storage under refrigeration. In a second trial with cod cooked sous-vide at 52 °C for 20 min followed by HP treatments at 300 or 600 MPa (with HP treatment temperatures of 22 °C or 50 °C for 4 or 8 min, depending on treatment), only the treatments at 600 MPa delayed bacterial growth for at least 30 days under refrigeration. The optimal HP conditions to improve the microbiological quality of sous-vide cod cooked at low temperatures were obtained at 600 MPa for 4 min at a pressurization temperature of 50 °C. Bacterial diversity was studied in cod cooked sous-vide at 52 °C for 20 min by HTS. In the absence of HP treatment, Proteobacteria was the main bacterial group. A succession of Pseudomonadaceae (Pseudomonas) and Enterobacteriaceae was observed during storage. Firmicutes had low relative abundances and were represented mainly by Anoxybacillus (early storage) and Carnobacterium (late storage). The HP-treated sous-vide cod showed the greatest differences from controls during late storage, with Aerococcus and Enterococcus as predominant groups (depending on the HP conditions). The application of HTS provided new insights on the diversity and dynamics of the bacterial communities of sous-vide cod, revealing the presence of bacterial genera not previously described in this food, such as Anoxybacillus. The significance of Anoxybacillus as a contaminant of seafoods should be further investigated.

Research – The effectiveness and safety of high pressure food treatment

asca

Definition and applicable regulations

Type of food treated and processing conditions

Intrinsic and extrinsic factors of food that influence the effectiveness of high pressure treatment

Possible chemical and microbiological hazards associated with high pressure treatment

High pressure treatment as an alternative to pasteurization of milk

Efficacy of high pressure treatment for the control of Listeria monocytogenes in ready-to-eat foods

Research – High Hydrostatic Pressure Treatment Ensures the Microbiological Safety of Human Milk Including Bacillus cereus and Preservation of Bioactive Proteins Including Lipase and Immuno-Proteins: A Narrative Review

MDPI

Breast milk is the nutritional reference for the child and especially for the preterm infant. Breast milk is better than donated breast milk (DHM), but if breast milk is not available, DHM is distributed by the Human Milk Bank (HMB). Raw Human Milk is better than HMB milk, but it may contain dangerous germs, so it is usually milk pasteurized by a Holder treatment (62.5 °C 30 min). However, Holder does not destroy all germs, and in particular, in 7% to 14%, the spores of Bacillus cereus are found, and it also destroys the microbiota, lipase BSSL and immune proteins. Another technique, High-Temperature Short Time (HTST 72 °C, 5–15 s), has been tried, which is imperfect, does not destroy Bacillus cereus, but degrades the lipase and partially the immune proteins. Therefore, techniques that do not treat by temperature have been proposed. For more than 25 years, high hydrostatic pressure has been tried with pressures from 100 to 800 MPa. Pressures above 400 MPa can alter the immune proteins without destroying the Bacillus cereus. We propose a High Hydrostatic Pressure (HHP) with four pressure cycles ranging from 50–150 MPa to promote Bacillus cereus germination and a 350 MPa Pressure that destroys 106 Bacillus cereus and retains 80–100% of lipase, lysozyme, lactoferrin and 64% of IgAs. Other HHP techniques are being tested. We propose a literature review of these techniques. View Full-Text