Bulging packaging of soy dessert due to yeast growth in Germany and Denmark
Archives
-
Join 8,454 other subscribers
KSWFoodWorld
Blog Stats
- 321,101 Views
Links
Bulging packaging of soy dessert due to yeast growth in Germany and Denmark
Posted in Coliforms, Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Mould/Mold, Moulds, TVC, Yeasts
GTIN | Lot | Date |
---|---|---|
3533950000617 | 03823A | Date of minimum durability 07/02/2025 |
Posted in Bacteria, bacterial contamination, food contamination, food handler, Food Hazard, Food Hygiene, Food Inspections, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, food recall, Food Safety, Food Safety Alert, Food Safety Management, Food Safety Regulations, Food Spoilage, Food Testing, mold, Mould/Mold, Yeasts
Posted in Coliforms, Decontamination Microbial, E.coli, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, MAP, Mesophilic Aerobes, microbial contamination, Microbial growth, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Mould/Mold, Yeasts
Posted in Bacillus, Bacillus cereus, Decontamination Microbial, Enterobacteriaceae, ESBL, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, fungi, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Microbiology Risk, Mould/Mold, Research, Yeasts
In Mexico, the prevalence of Salmonella enterica in low water activity foods and their link to outbreaks is unknown. The aim of this study was to determine the microbiological profile and the prevalence of S. enterica in low water activity foods (peanuts, pecans, raisins, sun-dried tomatoes, and chocolate sprinkles) purchased in retail establishments in Queretaro, Mexico. Seventy samples of each food item sold in bulk were purchased. Aerobic plate count (APC), molds, yeasts, total coliforms, Escherichia coli, and Staphylococcus aureus were quantified in 10-g samples. The prevalence of S. enterica in 25 g samples was determined. From positive samples, S. enterica isolates (60) were characterized based on their antimicrobial susceptibility to 14 antibiotics, the presence/absence of 13 virulence genes and serotype. The concentration of APC, molds, yeast, total coliforms, and E. coli ranged from 3.1-5.2 Log CFU g-1, 2.0-2.4 Log CFU g-1, 2.0-3.0 Log CFU g-1, 0.6-1.1 Log MPN g -1, and 0.5-0.9 Log MPN g -1, respectively. S. aureus was not detected in any sample (<10 CFU g -1). The prevalence of S. enterica in chocolate sprinkles, raisins, peanuts, pecans, and sun-dried tomatoes was 26%, 29%, 31%, 40%, and 52%, respectively. Most isolates (68.3%) were resistant to at least one antibiotic. The chromosome-associated virulence genes were found in all isolates and only one strain had sopE, and 98.3% of the isolates were grouped in the same virulotype. Among the isolates, the most frequent serotype was Tennessee (51/60). According to the characteristics evaluated, the isolates were grouped in 24 clusters. The elevated prevalence of S. enterica highlight the role of low water activity food items sold in bulk at markets as a potential vehicle for pathogens transmission. Regardless of the low variability among S. enterica isolates, their characterization could be helpful to elucidate which strains are circulating in these foods for improving epidemiological surveillance.
Posted in Coliforms, Decontamination Microbial, E.coli, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Mould/Mold, Research, Salmonella, Staphylococcus aureus, Yeasts
Outbreaks of enteric pathogens linked to wheat flour have led the wheat milling industry to seek solutions addressing this food safety concern. Chlorinated water at 400-700ppm has been used in the flour milling industry as a tempering aid to control growth of yeast and mold in tempering bins. However, the effectiveness of chlorinated water for inactivating enteric pathogens on wheat kernels remained unknown. Five strains of Shiga-toxin producing Escherichia coli (STEC) and two strains of Salmonella were inoculated onto hard red spring wheat at 7 log CFU/g and stored at room temperature for 1-month. Inoculated wheat was tempered with four concentrations (0, 400, 800, 1200ppm) of chlorinated water (pH 6.5). The reduction due to chlorine was determined by calculating change in cell density at each chlorine level using the response at 0ppm as a reference. Uninoculated wheat tempered with chlorinated water was used to measure flour quality parameters. Changes in pathogen density over 18 hours ranged from -2.35 to -0.30 log CFU/g with 800ppm chlorinated water and were not significantly different from changes at 400ppm and 1200ppm. Significant (p< 0.05) differences in the extent of reduction were observed among strains. However, the effect of chlorinated water at reducing native microbes on wheat kernels was minimal, with an average reduction of 0.39 log CFU/g for all concentrations. No significant (p>0.05) changes occurred in flour quality and gluten functionality, or during breadmaking for grains tempered at 400 and 800ppm chlorinated water. There were small but significant (p<0.05) changes in flour protein content, final viscosity, and water absorption when tempered with 1200ppm chlorinated water. The data showed that the level of chlorinated water currently used in industry for tempering could reduce enteric pathogen numbers by 1.22 log CFU/g for STEC and 2.29 log CFU/g for Salmonella, with no significant effects on flour quality and gluten functionality.
Posted in Decontamination Microbial, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Food Pathogen, Food Technology, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, mold, Mould/Mold, pathogenic, Research, Salmonella, STEC, STEC E.coli, Technology, Yeasts
Fresh carrot juice presents nutritional and organoleptic qualities which have to be preserved. However, it is a fast perishable beverage, and its low-acidic pH promotes the development of foodborne pathogens and spoilage microorganisms. This study aims to assess the modification and variability of physicochemical and microbial indicators during storage of carrot juice, and to isolate and select microorganisms to be used as promoters of spoilage to quantify the effect of preservation treatments. To achieve that, 10 batches of carrot Daucus carota cv. Maestro juice were prepared independently, stored up to 14 days at 4 °C and analyzed. Volatile compound composition differed mainly according to the analyzed batch. During storage, an increase of the content of ethanol, ethyl acetate or 2-methoxyphenol, which are produced by different microorganisms, was noticed. Isolation of bacteria revealed Pseudomonas, lactic acid bacteria, and enterobacteria, some of them provoking odor modification of carrot juice at 4 °C. Assays in carrot juice with isolated yeasts and molds showed the ability of Meyerozyma guillermondii to induce texture modification and some isolates, e.g., Pichia guillermondii, resulted in gas production. Selected isolates able to induce spoilage are useful to test preservative treatments of fresh carrot juice under controlled conditions. View Full-Text
For thousands of years, humans have exploited the natural process of fermentation of various foods to preserve them, and to enjoy the changes in the sensory characteristics that could be produced. Recently, the world of fermented beverages has gone through a rapid transformation linked to deep changes in consumer preferences, consumption habits, climate, new regulations and entry of emerging countries, accompanied by safety concerns and an important reduction in economic resources available to people. As with all food handling and preparation, we need to be sure the fermented food produced is safe. Fermentation is a complex biological process where microbial diversity takes place and the environment created inside of the fermented food provides the conditions to reduce the risk of pathogenic bacteria growth, thus providing safe food. In addition, food manufacturers fermenting food carefully control their processing and must comply with the National Food Standards Codes. Although these products have a generally good food safety record, sometimes inadequate manufacturing practices or the presence of acidophilic pathogens could compromise food safety. In fact, fermented beverages may adversely become contaminated with pathogens or microbial toxins and thereby transform into vehicles that can transmit diseases to the consumers. Moreover, many microorganisms can deteriorate the physical-chemical and sensory properties as well as the flavor of the final products. In this editorial, we present an overview of a review and six original research papers published in the Special Issue “Fermentation Process and Microbial Safety of Beverages” of the Beverages journal.
Posted in Aspergillus, Bacillus, escherichia coli, Food Micro Blog, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, Lactobacillus, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Research, Saccharomyces cerevisiae, Saccharomyces cerevisiae, Yeasts
The washing step is necessary to remove biological and physical hazards from minimally processed vegetables. Nevertheless, the risk of foodborne diseases could persist even after washing due to postsanitizing contamination, and little is known about the antimicrobial effect of residual sanitizers. This study was conducted to compare the effectiveness of sodium hypochlorite (SH), sodium bicarbonate, and Cinnamomum zeylanicum essential oil (CEO) as sanitizers on lettuce (8°C, 48 h). First, the effect of sanitizers in reducing total aerobic mesophilic and psychrotrophic bacteria, yeast and molds, lactic acid bacteria, and Enterobacteriaceae on lettuce was evaluated with some insights on lettuce quality attributes (pH, color, and sensory analysis). Then, the capability of the treatments in preventing postwashing Salmonella adhesion on lettuce surface was investigated. Commercial SH disinfectant (solution at 2%) and CEO (0.5%) reduced microbial contamination in lettuce, without affecting the overall acceptability after 48 h at 8°C. SH reduced postsanitizing Salmonella adhesion of about 2.7 Log colony forming unit (CFU)/g. The microbial reduction was confirmed by confocal laser scanning microscopy, which also evidenced Salmonella internalization within stomata. Interestingly, CEO as well reduced Salmonella adhesion but with lower efficacy (0.44–1.00 Log CFU/g reduction), while sodium bicarbonate (15 mg/ml) was not effective. In conclusion, SH and CEO seem to be effective sanitizing agents, capable of improving the microbiological profile of fresh produce. In addition, the residual sanitizers, that remain on lettuce after washing, play a role in reducing Salmonella adhesion.
Posted in Decontamination Microbial, E.coli, Enterobacteriaceae, Food Micro Blog, Food Microbiology, Food Microbiology Blog, Food Microbiology Research, Food Microbiology Testing, microbial contamination, Microbiological Risk Assessment, Microbiology, Microbiology Investigations, Mould/Mold, psychrotrophic bacteria, Research, Salmonella, Total Viable Count, Yeasts