Category Archives: drug resistant

Research – Dodging antibiotic resistance by curbing bacterial evolution

Science Daily

Lowering mutation rates in harmful bacteria might be an as yet untried way to hinder the emergence of antimicrobial pathogens. One target for drug development might be a protein factor, DNA translocase Mfd, that enables bacteria to evolve rapidly by promoting mutations in many different bacterial species. This action speeds antibiotic resistance, including multi-drug resistance. Working on drugs to block Mfd and similar factors could be a revolutionary strategy to address the worldwide crisis of treatment-resistant infectious diseases

Research – Resistant bacteria: Can raw vegetables and salad pose a health risk?

Science Daily 

 

Salad is popular with people who want to maintain a balanced and healthy diet. Salad varieties are often offered for sale ready-cut and film-packaged. It is known that these types of fresh produce may be contaminated with bacteria that are relevant from the point of view of hygiene. A working group led by Professor Dr. Kornelia Smalla from the Julius Kühn Institute (JKI) has now shown that these bacteria may also include bacteria that are resistant to antibiotics.

“We have to get to the bottom of these findings,” said Professor Dr Georg Backhaus, President of the Julius Kühn Institute. Antimicrobial-resistant bacteria are known to occur in manure, sewage sludge, soil and bodies of water. “This worrying detection of these kinds of bacteria on plants is in line with similar findings for other foods,” adds Professor Dr Dr Andreas Hensel, President of the German Federal Institute for Risk Assessment (BfR). “We are now assessing as a matter of urgency what this finding means with regard to the health risk for consumers.”

Research – Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli

Academic Oup

Abstract

Background

Antimicrobial resistance (AMR) is a critical health problem, with systemic antimicrobial therapy driving development of AMR across the host spectrum.

Objectives

This study compares longitudinal carriage, at multiple timepoints, of AMR faecal Escherichia coli in dogs undergoing routine antimicrobial treatment.

Methods

Faecal samples (n =457) from dogs (n =127) were examined pretreatment, immediately after treatment and 1 month and 3 months post-treatment with one of five antimicrobials. Isolates were tested for susceptibility to a range of antimicrobials using disc diffusion for each treatment group at different timepoints; the presence/absence of corresponding resistance genes was investigated using PCR assays. The impact of treatment group/timepoint and other risk factors on the presence of resistance [MDR, fluoroquinolone resistance, third-generation cephalosporin resistance (3GCR) and ESBL and AmpC production] was investigated using multilevel modelling. Samples with at least one AMR E. coli from selective/non-selective agar were classed as positive. Resistance was also assessed at the isolate level, determining the abundance of AMR from non-selective culture.

Results

Treatment with β-lactams or fluoroquinolones was significantly associated with the detection of 3GCR, AmpC-producing, MDR and/or fluoroquinolone-resistant E. coli, but not ESBL-producing E. coli, immediately after treatment. However, 1 month post-treatment, only amoxicillin/clavulanate was significantly associated with the detection of 3GCR; there was no significant difference at 3 months post-treatment for any antimicrobial compared with pretreatment samples.

Conclusions

Our findings demonstrated that β-lactam and fluoroquinolone antibiotic usage is associated with increased detection of important phenotypic and genotypic AMR faecal E. coli following routine therapy in vet-visiting dogs. This has important implications for veterinary and public health in terms of antimicrobial prescribing and biosecurity protocols, and dog waste disposal.

Research – Rising antibiotic resistance caused by pollutants needs action

Chemistry World

Our environment is contaminated with antibiotics. While this is often at a dilute level, sometimes the concentrations are surprisingly high. There is a growing recognition that this is a public health issue.

Antibiotic resistance accounts for hundreds of thousands of deaths each year and is a major global health threat. While attention has focused on antibiotic overuse, hospital outbreaks and new drug-resistant superbugs, antibiotics in waterways and soils is now viewed as stoking a rise of antibiotic resistance.

How do bacteria become resistant to antibiotics?

Mutation and evolution. Much of the resistance in disease-causing bacteria originate from existing genes. Antibiotics are part of many microorganisms’ natural armoury, so all sorts of resistance genes have always existed. What has changed is that these genes, one by one, jump from harmless bacteria to those that cause disease.

A bacterium may mutate and gain a small advantage in the presence of an antibiotic. And a gene that confers a competitive advantage can spread fast amongst bacteria because of their high rate of replication.

Having locations where bacteria can mingle in a thin soup of antibiotics and resistance genes is a recipe for resistance transferring between different species… and potentially creating new superbugs.