Category Archives: Biofilm

Research – Anti-Biofilm Activity of Laurel Essential Oil against Vibrio parahaemolyticus

MDPI

Abstract

Vibrio parahaemolyticus is a primary seafood-associated pathogen that could cause gastroenteritis. It can attach to various surfaces and form a biofilm, which poses serious threats to food safety. Hence, an effective strategy is urgently needed to control the biofilm formation of V. parahaemolyticus. Laurel essential oil (LEO) is used in food, pharmaceutical and other industries, and is commonly used as a flavoring agent and valuable spice in food industries. The potential antibiofilm effects of LEO against V. parahaemolyticus were examined in this study. LEO obviously reduced biofilm biomass at sub-inhibitory concentrations (SICs). It decreased the metabolic activity and viability of biofilm cells. Microscopic images and Raman spectrum indicted that LEO interfered with the structure and biochemical compositions of biofilms. Moreover, it also impaired swimming motility, decreased hydrophobicity, inhibited auto-aggregation and reduced attachment to different food-contact surfaces. RT-qPCR revealed that LEO significantly downregulated transcription levels of biofilm-associated genes of V. parahaemolyticus. These findings demonstrate that LEO could be potentially developed as an antibiofilm strategy to control V. parahaemolyticus biofilms in food industries.

Research – Killing of a Multispecies Biofilm Using Gram-Negative and Gram-Positive Targeted Antibiotic Released from High Purity Calcium Sulfate Beads

MDPI

Abstract

Background: Multispecies biofilm orthopedic infections are more challenging to treat than mono-species infections. In this in-vitro study, we aimed to determine if a multispecies biofilm, consisting of Gram positive and negative species with different antibiotic susceptibilities could be treated more effectively using high purity antibiotic-loaded calcium sulfate beads (HP-ALCSB) containing vancomycin (VAN) and tobramycin (TOB) in combination than alone. Methods: Three sets of species pairs from bioluminescent strains of Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) and clinical isolates, Enterococcus faecalis (EF) and Enterobacter cloacae were screened for compatibility. PA + EF developed intermixed biofilms with similar cell concentrations and so were grown on 316L stainless steel coupons for 72 h or as 24 h agar lawn biofilms and then treated with HP-ALCSBs with single or combination antibiotics and assessed by viable count or bioluminescence and light imaging to distinguish each species. Replica plating was used to assess viability. Results: The VAN + TOB bead significantly reduced the PA + EF biofilm CFU and reduced the concentration of surviving antibiotic tolerant variants by 50% compared to single antibiotics. Conclusions: The combination of Gram-negative and positive targeted antibiotics released from HP-ALCSBs may be more effective in treating multispecies biofilms than monotherapy alone.

Research – Listeria monocytogenes Biofilms in Food-Associated Environments: A Persistent Enigma

MDPI

Abstract

Listeria monocytogenes (LM) is a bacterial pathogen responsible for listeriosis, a foodborne illness associated with high rates of mortality (20–30%) and hospitalisation. It is particularly dangerous among vulnerable groups, such as newborns, pregnant women and the elderly. The persistence of this organism in food-associated environments for months to years has been linked to several devastating listeriosis outbreaks. It may also result in significant costs to food businesses and economies. Currently, the mechanisms that facilitate LM persistence are poorly understood. Unravelling the enigma of what drives listerial persistence will be critical for developing more targeted control and prevention strategies. One prevailing hypothesis is that persistent strains exhibit stronger biofilm production on abiotic surfaces in food-associated environments. This review aims to (i) provide a comprehensive overview of the research on the relationship between listerial persistence and biofilm formation from phenotypic and whole-genome sequencing (WGS) studies; (ii) to highlight the ongoing challenges in determining the role biofilm development plays in persistence, if any; and (iii) to propose future research directions for overcoming these challenges.

Research – The Isolation, Genetic Analysis and Biofilm Characteristics of Listeria spp. from the Marine Environment in China

MDPI

Abstract

Listeria monocytogenes is an important pathogen that can cause listeriosis. Despite the growing recognition of Listeria spp. as a foodborne and environmental pathogen, the understanding of its prevalence and characteristics of Listeria spp. in the marine environment remains unknown. In this study, we first investigated the genetic and phenotypic characteristics of Listeria species isolated in a coastal city in China. The findings revealed that the sequence type 87 (ST87) L. monocytogenes, a prevalent clinical and seafood strain in China, dominates in recreational beach sands and possesses a notable biofilm-forming capacity in seawater. The presence of ST87 L. monocytogenes in coastal environments indicates the potential health risks for both recreational activities and seafood consumption. Moreover, the ST121 isolates from sand had a versatile plasmid encoding multifunctional genes, including uvrX for UV resistance, gbuC for salt resistance, and npx for oxidative resistance and multiple transposases, which potentially aid in survival under natural environments. Black-headed gulls potentially facilitate the spread of L. monocytogenes, with similar ST35 strains found in gulls and beach sand. As a reservoir of microbes from marine environments and human/animal excrement, coastal sand would play an important role in the spread of L. monocytogenes and is an environmental risk for human listeriosis.

Research – Isolation of Biofilm-Forming Staphylococci from the Bulk-Tank Milk of Small Ruminant Farms in Greece

MDPI

Abstract

The objectives of this study were (i) to describe staphylococcal isolates recovered from bulk-tank raw milk collected from sheep and goat farms during a countrywide study performed in Greece, (ii) to study management factors potentially associated with their presence in bulk-tank milk and (iii) to provide evidence regarding their association with the quality of the milk. In total, 312 staphylococcal isolates, recovered from samples of bulk-tank raw milk from 444 small ruminant farms in Greece, were evaluated in this work. The in vitro formation of biofilm by the isolates was tested by combining the findings of (a) culture appearance on Congo Red agar plates and (b) results of a microplate adhesion test. The most frequently identified species was Staphylococcus aureus (75 isolates); other frequently recovered species were S. simulans (44 isolates), S. equorum (34 isolates) and S. haemolyticus (26 isolates); in total, 23 species were identified. In total, 224 (71.8%) isolates were biofilm-forming and were recovered from the bulk-tank milk samples of 148 sheep flocks (45.5%) and 55 goat herds (46.2%). There was evidence of seasonality in the isolation of staphylococci: during spring, mostly biofilm-forming isolates were recovered, whilst during summer, mostly non-biofilm-forming isolates were recovered. Among farms applying machine-milking, the proportion of farms from which biofilm-forming isolates were recovered was higher where water with temperature < 50 °C or ≥90 °C was used to clean the milking parlour. In the multivariable analyses, for farms applying machine-milking, the temperature of the water emerged as the only significant variable (p = 0.024), whilst in farms applying hand-milking, the only tendency that emerged was for the frequency of collection of milk from the farm tank (p = 0.08). In sheep flocks, recovery of biofilm-forming staphylococci from the bulk-tank milk was associated with higher somatic cell counts and higher total bacterial counts in the milk. The study identified abiotic factors related to the presence and isolation of these bacteria, specifically the temperature of water used for the cleaning of the milking parlour (in farms where machine-milking is applied) and the frequency of milk collection from the farm tank. These factors apply after the production of milk, and they could thus be regulated appropriately in order to reduce bacterial load and improve the quality of milk delivered to dairy plants. In sheep farms, an association was also seen between recovery of biofilm-forming staphylococci and high somatic cell counts in milk.

Research – Breakthrough peptide research to combat bacterial biofilms

Science Daily

Researchers have developed peptides that can help combat bacteria growing in biofilms, which occur in up to 80% of human infections. The team of researchers have developed antimicrobial peptides that can target the harmful bacteria growing in biofilms.

Research – Pseudomonas Biofilms Pose Food Safety Threat by Aiding Listeria Survival in Processing Environments

Food Safety.Com

Pseudomonas biofilms can aid the survival of Listeria monocytogenes cells even after disinfection, according to a recent study. Although Pseudomonas are often overlooked as a food safety hazard due to being associated with food spoilage rather than with human foodborne illnesses, the study’s findings suggest that the bacteria may pose a direct threat to food safety in the processing environment.

Pseudomonas are the most commonly found bacteria in food processing environments due to characteristics such as a high growth rate at low temperatures, a high tolerance of antimicrobial agents, and biofilm formation. The bacteria have been of special interest as colonizers in food processing environments, as a food spoilage organism, and as protectors of foodborne pathogens.

Previous research has demonstrated the possibility of surviving bacteria exposed to sub-lethal concentrations of disinfectants being able to co-select for both disinfectant- and antibiotic-resistant properties. Several studies also indicate that interspecies interactions in a biofilm could serve as an accelerator for horizontal gene transfer, as well as facilitate adaptation to environmental conditions and the subsequent decreased susceptibility to antimicrobials. It has been suggested that multi-species, Pseudomonas-dominated biofilms could host and shelter pathogens like L. monocyotogenes.

In the study, researchers from the Norwegian University of Science and Technology isolated Pseudomonas samples from cleaned and disinfected surfaces in a salmon processing facility. A total of 186 isolates were screened for biofilm formation at 12 °C, and were graded as strong, medium, or weak biofilm producers. A high variation in biofilm formation was observed, with 12 percent rated as strong, 29 percent as medium, and 27 percent as weak biofilm producers, as well as 29 percent not producing a detectable biofilm.

Research – Estimating Waterborne Infectious Disease Burden by Exposure Route, United States, 2014

CDC

Abstract

More than 7.15 million cases of domestically acquired infectious waterborne illnesses occurred in the United States in 2014, causing 120,000 hospitalizations and 6,600 deaths. We estimated disease incidence for 17 pathogens according to recreational, drinking, and nonrecreational nondrinking (NRND) water exposure routes by using previously published estimates. In 2014, a total of 5.61 million (95% credible interval [CrI] 2.97–9.00 million) illnesses were linked to recreational water, 1.13 million (95% CrI 255,000–3.54 million) to drinking water, and 407,000 (95% CrI 72,800–1.29 million) to NRND water. Recreational water exposure was responsible for 36%, drinking water for 40%, and NRND water for 24% of hospitalizations from waterborne illnesses. Most direct costs were associated with pathogens found in biofilms. Estimating disease burden by water exposure route helps direct prevention activities. For each exposure route, water management programs are needed to control biofilm-associated pathogen growth; public health programs are needed to prevent biofilm-associated diseases.

Research – High Disinfectant Tolerance in Pseudomonas spp. Biofilm Aids the Survival of Listeria monocytogenes

MDPI

Abstract

Pseudomonas spp. are the most commonly found bacteria in food-processing environments due to properties such as a high growth rate at low temperatures, a high tolerance of antimicrobial agents, and biofilm formation. In this study, a set of Pseudomonas isolates originating from cleaned and disinfected surfaces in a salmon processing facility were screened for biofilm formation at 12 °C. A high variation in biofilm formation between the isolates was observed. Selected isolates, in both planktonic and biofilm states, were tested for resistance/tolerance to a commonly used disinfectant (peracetic acid-based) and antibiotic florfenicol. Most isolates showed a much higher tolerance in the biofilm state than in the planktonic state. In a multi-species biofilm experiment with five Pseudomonas strains with and without a Listeria monocytogenes strain, the Pseudomonas biofilm appeared to aid the survival of L. monocytogenes cells after disinfection, underscoring the importance of controlling the bacterial load in food-processing environments.

Research – Detection, Remediation and Control of Biofilms

Food Safety Tech

Biofilms, those slimy films of bacteria that cling to surfaces, can wreak havoc on your equipment and harbor dangerous pathogens that contaminate your products. And they are not easy to detect or remove. Charles Giambrone, Food Safety Manager, Rochester Midland, shared strategies for the detection, remediation, and control of biofilms at the Food Safety Tech Hazards Conference in April.

“Biofilms are how microbes look to survive in nature and within your food plant,” said Giambrone, “and they can form quickly—within 13 hours.”

Biofilms form on any equipment with a large surface area and, in addition to contaminating food, they can damage equipment. “Once you get biofilms on the conveyor belts, you have slippage,” said Giambrone. “Just as biofilm plague will rot your teeth, biofilms form acid that corrode equipment. Eliminating biofilms can increase performance and prolong the lifespan of equipment.”