Category Archives: NGS

Research – Source of 7-year Listeria outbreak found in Germany

Food Safety News

German officials believe they have solved a seven-year Listeria outbreak that included the death of one man.

Using next generation sequencing (NGS) methods, the Bavarian State Office for Health and Food Safety (LGL) helped identify a likely connection between Listeria infections in Lower Bavaria and in the district of Altötting since 2015 and a food company.

The company was not named by authorities but they described it as a small businesses in the district of Passau that had various customers in the region. Local media reported it was a produce company that supplied canteens and care homes but not retailers.

Alongside the results from the NGS analysis, there are indications of an epidemiological connection to those sick based on the sales area.

Research – Genomically Informed Strain-Specific Recovery of Shiga Toxin–Producing Escherichia coli during Foodborne Illness Outbreak Investigations

Journal of Food Protection

Next-generation sequencing plays an important role in the characterization of clinical bacterial isolates for source attribution purposes during investigations of foodborne illness outbreaks. Once an illness cluster and a suspect food vehicle have been identified, food testing is initiated for confirmation and to determine the scope of a contamination event so that the implicated lots may be removed from the marketplace. For biochemically diverse families of pathogens such as Shiga toxin–producing Escherichia coli (STEC), the ability to detect specific strains may be hampered by the lack of a universal selective enrichment approach for their recovery against high levels of background microbiota. The availability of whole genome sequence data for a given outbreak STEC strain prior to commencement of food testing may provide food microbiologists an opportunity to customize selective enrichment techniques favoring the recovery of the outbreak strain. Here we demonstrate the advantages of using the publicly available ResFinder tool in the analysis of STEC model strains belonging to serotypes O111 and O157 to determine antimicrobial resistance traits that can be used in formulating strain-specific enrichment media to enhance recovery of these strains from microbiologically complex food samples. The improved recovery from ground beef of model STEC strains with various antimicrobial resistance profiles was demonstrated using three classes of antibiotics as selective agents, suggesting the universal applicability of this new approach in supporting foodborne illness investigations.