Science Direct
The present study investigated the efficacy of sub-inhibitory concentrations (SICs, concentrations not inhibiting bacterial growth) and bactericidal concentrations (MBCs) of four, generally recognized as safe (GRAS), plant-derived antimicrobials (PDAs) in inhibiting Listeria monocytogenes (LM) biofilm formation and inactivating mature LM biofilms, at 37, 25 and 4°C on polystyrene plates and stainless-steel coupons. In addition, the effect of SICs of PDAs on the expression of LM genes critical for biofilm synthesis was determined by real-time quantitative PCR. The PDAs and their SICs used for inhibition of biofilm were trans-cinnamaldehyde (TC 0.50, 0.75 mM), carvacrol (CR 0.50, 0.65 mM), thymol (TY 0.33, 0.50 mM), and eugenol (EG 1.8, 2.5 mM), whereas the PDA concentrations used for inactivating mature biofilms were 5.0 and 10.0 mM (TC, CR), 3.3 and 5.0 mM (TY), 18.5 and 25.0 mM (EG). All PDAs inhibited biofilm synthesis and inactivated fully formed LM biofilms on both matrices at three temperatures tested (P<0.05). Real-time quantitative PCR data revealed that all PDAs down-regulated critical LM biofilm-associated genes (P<0.05). Results suggest that TC, CR, TY, and EG could potentially be used to control LM biofilms in food processing environments, although further studies under commercial settings are necessary.
Science Direct
As in many cases, pathogenic microorganisms contaminate the food material as clusters or group of individual cells; the effectiveness of sampling plans based on mixture distributions representing bacterial agglomeration was assessed. In general, sampling plans that do not take into account such consideration lead to higher probabilities of accepting defective lots. Since quite often no scientific data are available in order to determine the degree of over-dispersion or clustering of the target microorganisms, in this theoretical study we compare the variance-to-mean ratio and the reciprocal of the exponent k of the negative binomial distribution (NB) as measures of dispersion. The mixture Poisson-logarithmic (Plog) model is proposed as a special case of the NB distribution, where the bacterial clusters are Poisson distributed while the individuals in each cluster follow a logarithmic distribution. In order to describe microbial data characterised by an excess of zero counts (1−π), we assess the zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) distributions as alternative statistical models. The Operating Characteristic (OC) curves generated on the basis of the zero-inflated distributions were compared for fixed values of the variance-to-mean ratio and the parameter π at any mean level of contamination and sample weight adopted. The results show that assuming fixed 1/k and π for the NB and ZIP distributions, respectively, both models converge to a Poisson distribution at the producer’s quality level. In contrast, the consumer’s quality level is highly affected by assuming fixed values of 1/k and π since it increases. The OC curves generated for the NB and ZIP distributions assuming fixed values of the variance-to-mean ratio at any mean level of contamination and sample weight adopted, reveal that both the consumer’s and producer’s quality level are affected, as they both increase. Within the ZINB distribution, a separate investigation is conducted to determine which parameters are mostly responsible for describing microbial over-dispersion. As a general conclusion, for the design of sampling plans based on any statistical distribution, OC curves that reflect microbial agglomeration should be constructed considering that variance is not constant but dependant on the level of microbial concentration of the lot.
Like this:
Like Loading...