Category Archives: Enterococcus faecalis

Research – Diversity of Faecal Indicator Enterococci among Different Hosts: Importance to Water Contamination Source Tracking

MDPI

Abstract

Enterococcus spp. are common bacteria present in the intestinal tracts of animals and are used as fecal indicators in aquatic environments. On the other hand, enterococci are also known as opportunistic pathogens. Elucidating their composition in the intestinal tracts of domestic animals can assist in estimating the sources of fecal contamination in aquatic environments. However, information on the species and composition of enterococci in animal hosts (except humans) is still lacking. In this study, enterococci were isolated from the feces of cattle, pigs, birds, and humans using selective media. Enterococcal species were identified using mass spectrometry technology, and each host was characterized by diversity and cluster analysis. The most dominant species were E. hirae in cattle, E. faecium in birds, and E. faecalis in pigs and humans. Cattle had the highest alpha diversity, with high interindividual and livestock farm diversity. The dominant enterococcal species in pigs and humans were identical, and cluster analysis showed that the majority of the two hosts’ species clustered together.

Research – Killing of a Multispecies Biofilm Using Gram-Negative and Gram-Positive Targeted Antibiotic Released from High Purity Calcium Sulfate Beads

MDPI

Abstract

Background: Multispecies biofilm orthopedic infections are more challenging to treat than mono-species infections. In this in-vitro study, we aimed to determine if a multispecies biofilm, consisting of Gram positive and negative species with different antibiotic susceptibilities could be treated more effectively using high purity antibiotic-loaded calcium sulfate beads (HP-ALCSB) containing vancomycin (VAN) and tobramycin (TOB) in combination than alone. Methods: Three sets of species pairs from bioluminescent strains of Pseudomonas aeruginosa (PA) and Staphylococcus aureus (SA) and clinical isolates, Enterococcus faecalis (EF) and Enterobacter cloacae were screened for compatibility. PA + EF developed intermixed biofilms with similar cell concentrations and so were grown on 316L stainless steel coupons for 72 h or as 24 h agar lawn biofilms and then treated with HP-ALCSBs with single or combination antibiotics and assessed by viable count or bioluminescence and light imaging to distinguish each species. Replica plating was used to assess viability. Results: The VAN + TOB bead significantly reduced the PA + EF biofilm CFU and reduced the concentration of surviving antibiotic tolerant variants by 50% compared to single antibiotics. Conclusions: The combination of Gram-negative and positive targeted antibiotics released from HP-ALCSBs may be more effective in treating multispecies biofilms than monotherapy alone.

Research – Microbial Spoilage of Traditional Goose Sausages Produced in a Northern Region of Italy

MDPI

Abstract

Recently, during the ripening of goose sausage, a defect consisting of ammonia and vinegar smell was noticed. The producer of the craft facility, located in Lombardia, a Northern region of Italy, asked us to identify the cause of that defect. Therefore, this study aimed to identify the potential responsible agents for the spoilage of this lot of goose sausages. Spoilage was first detected by sensory analysis using the “needle probing” technique; however, the spoiled sausages were not marketable due to the high ammonia and vinegar smell. The added starter culture did not limit or inhibit the spoilage microorganisms, which were represented by Levilactobacillus brevis, the predominant species, and by Enterococcus faecalis and E. faecium. These microorganisms grew during ripening and produced a large amount of biogenic amines, which could represent a risk for consumers. Furthermore, Lev. brevis, being a heterofermentative lactic acid bacteria (LAB), also produced ethanol, acetic acid, and a variation in the sausage colour. The production of biogenic amines was confirmed in vitro. Furthermore, as observed in a previous study, the second cause of spoilage can be attributed to moulds which grew during ripening; both the isolated strains, Penicillium nalgiovense, added as a starter culture, and P. lanosocoeruleum, present as an environmental contaminant, grew between the meat and casing, producing a large amount of total volatile nitrogen, responsible for the ammonia smell perceived in the ripening area and in the sausages. This is the first description of Levilactobacillus brevis predominance in spoiled goose sausage.

RASFF Alert- Animal Feed – unauthorised ingredients in fish feed

European Food Alerts

RASFF

unauthorised ingredients (Lactobacillus plantarum, Enterococcus faecalis, Pediococcus lactis) in fish feed from China in the UK