Category Archives: ESBL

Research – Routine antibiotic therapy in dogs increases the detection of antimicrobial-resistant faecal Escherichia coli

Academic Oup

Abstract

Background

Antimicrobial resistance (AMR) is a critical health problem, with systemic antimicrobial therapy driving development of AMR across the host spectrum.

Objectives

This study compares longitudinal carriage, at multiple timepoints, of AMR faecal Escherichia coli in dogs undergoing routine antimicrobial treatment.

Methods

Faecal samples (n =457) from dogs (n =127) were examined pretreatment, immediately after treatment and 1 month and 3 months post-treatment with one of five antimicrobials. Isolates were tested for susceptibility to a range of antimicrobials using disc diffusion for each treatment group at different timepoints; the presence/absence of corresponding resistance genes was investigated using PCR assays. The impact of treatment group/timepoint and other risk factors on the presence of resistance [MDR, fluoroquinolone resistance, third-generation cephalosporin resistance (3GCR) and ESBL and AmpC production] was investigated using multilevel modelling. Samples with at least one AMR E. coli from selective/non-selective agar were classed as positive. Resistance was also assessed at the isolate level, determining the abundance of AMR from non-selective culture.

Results

Treatment with β-lactams or fluoroquinolones was significantly associated with the detection of 3GCR, AmpC-producing, MDR and/or fluoroquinolone-resistant E. coli, but not ESBL-producing E. coli, immediately after treatment. However, 1 month post-treatment, only amoxicillin/clavulanate was significantly associated with the detection of 3GCR; there was no significant difference at 3 months post-treatment for any antimicrobial compared with pretreatment samples.

Conclusions

Our findings demonstrated that β-lactam and fluoroquinolone antibiotic usage is associated with increased detection of important phenotypic and genotypic AMR faecal E. coli following routine therapy in vet-visiting dogs. This has important implications for veterinary and public health in terms of antimicrobial prescribing and biosecurity protocols, and dog waste disposal.

Research – Extended-spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) isolated from bean sprouts in the Netherlands

Plos One 

Entero

Community-acquired carriage and infections due to extended-spectrum beta-lactamase producing Enterobacteriaceae (ESBL-E) are increasing worldwide, resulting in increased morbidity, mortality and healthcare costs. The origins of community-acquired ESBL-E carriage and infections remain unclear. Bean sprouts are a potential source of Enterobacteriaceae for the community, as illustrated by outbreaks of pathogenic Enterobacteriaceae in the past. The current study focuses on contamination of retail bean sprouts with ESBL-E in the Netherlands. Of 131 bean sprout samples purchased between 2013 and 2016, 25 (19%) were contaminated with ESBL-E. The detected isolates were almost exclusively Klebsiella spp. and co-resistance to other antibiotics was observed frequently. Over time there was substantial genetic diversity between isolates. On the other hand, isolates from samples closely matched in time were frequently clonally related, indicative of batch contamination. Remarkably, no Escherichia coli was found. In conclusion, bean sprouts frequently harbor ESBL-E, which is a potential source for consumers.