Probiotics in fermented foods or commercially available supplements benefit the host by providing metabolites/peptides. The production of these metabolites varies with available substrates/prebiotic present in the system and their concentration. In this study, 0.5% peanut flour (PF) was used to stimulate the growth and production of metabolites of wild-type Lactobacillus casei (LC wt ) and compare with an engineered L. casei (LC CLA ) capable of converting a higher amount of conjugated linoleic acid (CLA). The total extracellular metabolites present in the cell-free cultural supernatant (CFCS) of LC wt (without peanut), LC wt+PF (with peanut), and LC CLA were collected after 24 h and 48 h of incubation, and their antagonistic activities against enterohemorrhagic Escherichia coli (EHEC EDL933) growth and pathogenesis were evaluated. All the collected metabolites exhibited varying efficiency in restraining EDL933 growth while supplementing low concentration of CLA to the 48-h CFCS from LC wt showed augmented antagonism toward EDL933. A downregulation of key virulence genes was observed from metabolites collected at 48-h time point. These observations indicate that the presence of metabolites in CFCSs including CLA, produced by Lactobacillus , which was further identified by gas chromatography-mass spectrometry; plays a critical role. This study demonstrates the potential applicability of Lactobacillus -originated CLA in the prevention of EDL933 mediated illnesses.
Archives
-
Join 341 other subscribers
KSWFoodWorld
Blog Stats
- 425,803 Views

