Research – Enabling cost-effective screening for antimicrobials against Listeria monocytogenes in ham

Journal of Food Protection

Ready-to-eat (RTE) meat products, such as deli ham, can support the growth of Listeria monocytogenes (LM) which can cause severe illness in immunocompromised individuals. The objectives of this study were to validate a miniature ham model (MHM) against the ham slice method and screen antimicrobial combinations to control LM on ham using response surface methodology (RSM) as a time- and cost-effective high-throughput screening tool. The effect of nisin (Ni), potassium lactate sodium acetate (PLSDA), lauric arginate (LAG), lytic bacteriophage (P100), and Ɛ-polylysine (EPL) added alone, or in combination, was determined on the MHM over 12 days of storage. Results showed the MHM accurately mimics the ham slice method since no statistical differences were found (p=0.526) in the change of LM cell counts in MHM and slice counts after 12 days of storage at 4°C for treated and untreated hams. The MHM was then used to screen antimicrobial combinations using an on-face design and three center points in a central composite design. The RSM was tested using a cocktail of five LM strains isolated from foodborne disease outbreaks. Three levels of the above mentioned antimicrobials were used in combination for a total of 28 runs performed in triplicate. The change of LM cell counts were determined after 12 days of storage at 4°C. All tested antimicrobials were effective on reducing LM cell counts on ham when added alone. A significant antagonistic interaction (p=0.002) was identified by the RSM between LAG and P100, where this antimicrobial combination caused a 2.2 logCFU/g change of LM cell counts after 12 days of storage. Two  interactions, between Ni and EPL (p=0.058), and Ni and P100 (p=0.068), showed possible synergistic effects against LM on the MHM. Other interactions were clearly non-significant, suggesting additive effects. In future work, the developed MHM in combination with RSM can be used as a high-throughput method to analyze novel antimicrobial treatments against LM

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s