| ABSTRACT |
|---|
Chia seeds provide a suitable environment for microorganisms. However, it is difficult to disinfect these seeds with water and/or chemical disinfectant solutions because the mucilage in the seeds can absorb water and consequently form gels. High-intensity light pulses (HILP) is one of the most promising emerging technologies for inactivating microorganisms on surfaces, in clear liquids and beverages, and on solid foods. The aim of this work was to evaluate the effect of HILP on SalmonellaTyphimurium in culture medium (in vitro tests) and inoculated onto chia seeds (in vivo tests). HILP was effective against Salmonella Typhimurium under both conditions: 8 s of treatment (10.32 J/cm2) resulted in a 9-log reduction during in vitro tests, and 15 s of treatment (19.35 J/cm2) resulted in a 4-log reduction on the inoculated chia seeds. Salmonella Typhimurium inactivation kinetics were accurately described using the Weibull model (R2 > 0.939). These results indicate that the use of HILP for microbial inactivation on seeds could generate products suitable for human consumption.
| HIGHLIGHTS |
|---|
-
Decontamination of chia seeds is complex because of rapid formation of gel on the seeds.
-
HILP was effective against Salmonella Typhimurium in vitro and on chia seeds.
-
The Weibull model appropriately described Salmonella Typhimurium inactivation curves.
-
HILP is a promising emerging technology for eliminating pathogens from chia seeds.
