Category Archives: High Pressure

Research – Effects of Thermally-Assisted and High-Pressure Processing on Background Microbiota and the Listeria monocytogenes Load of a Minimally Processed Commodity

MDPI

Abstract

The current study investigated the impact of treatments with elevated hydrostatic pressure (500 MPa) for inactivation of Listeria monocytogenes on smoked rainbow trout (Oncorhynchus mykiss) at high and low inoculation levels. The temperature values of the trials were set at 4.4 and 60.0 °C, adjusted with a circulating water bath connected to a stainless steel jacket surrounding the pressure processing chamber. Before pressure processing, the counts (selective counts of PALCAM, mean ± SD) of L. monocytogenes were 6.45 ± 0.1 log CFU/g and were reduced (p < 0.05) to 3.72 ± 0.3, and <1.48 ± 0.8 log CFU/g after 10 min of treatment at 4.4 and 60.0 °C, respectively. Treatments of low inoculation level samples were similarly efficacious and resulted in a reduction (p < 0.05) of the pathogen to 1.62 ± 0.3 and <0.82 ± 0.0 log CFU/g for treatments at 4.4 and 60.0 °C, respectively. At 4.4 °C, linear D-value and non-linear kmax1 were 8.68 and 0.50, and 5.81 and 2.41 for high-inoculation and low-inoculation samples, respectively. Application of hydrostatic pressure at 500 MPa at cold and elevated temperatures was efficacious for up to 5.03 log CFU/g reduction of L. monocytogenes, illustrating the potential for further adaptation of this technology.

Research – Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses

MDPI

Abstract

High-pressure processing (HPP) is currently one of the leading methods of non-thermal food preservation as an alternative to traditional methods based on thermal processing. The application of HPP involves the simultaneous action of a combination of several factors—pressure values (100–600 MPa), time of operation (a few–several minutes), and temperature of operation (room temperature or lower)—using a liquid medium responsible for pressure transfer. The combination of these three factors results in the inactivation of microorganisms, thus extending food shelf life and improving the food’s microbiological safety. HPP can provide high value for the sensory and quality characteristics of products and reduce the population of pathogenic microorganisms such as L. monocytogenes to the required safety level. Nevertheless, the technology is not without impact on the cellular response of pathogens. L. monocytogenes cells surviving the HPP treatment may have multiple damages, which may impact the activation of mechanisms involved in the repair of cellular damage, increased virulence, or antibiotic resistance, as well as an increased expression of genes encoding pathogenicity and antibiotic resistance. This review has demonstrated that HPP is a technology that can reduce L. monocytogenes cells to below detection levels, thus indicating the potential to provide the desired level of safety. However, problems have been noted related to the possibilities of cell recovery during storage and changes in virulence and antibiotic resistance due to the activation of gene expression mechanisms, and the lack of a sufficient number of studies explaining these changes has been reported.

Research – High-Pressure Inactivation of Bacillus cereus in Human Breast Milk

MDPI

Abstract

Although Holder pasteurization is the recommended method for processing breast milk, it does affect some of its nutritional and biological properties and is ineffective at inactivating spores. The aim of this study was to find and validate an alternative methodology for processing breast milk to increase its availability for newborn babies and reduce the financial loss associated with discarding milk that has become microbiologically positive. We prepared two series of breast milk samples inoculated with the Bacillus cereus (B. cereus) strain to verify the effectiveness of two high-pressure treatments: (1) 350 MPa/5 min/38 °C in four cycles and (2) cumulative pressure of 350 MPa/20 min/38 °C. We found that the use of pressure in cycles was statistically more effective than cumulative pressure. It reduced the number of spores by three to four orders of magnitude. We verified that the method was reproducible. The routine use of this method could lead to an increased availability of milk for newborn babies, and at the same time, reduce the amount of wasted milk. In addition, high-pressure treatment preserves the nutritional quality of milk.