Category Archives: Extended Spectrum B Lactamase

Research – Exploring Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Food-Producing Animals and Animal-Derived Foods

MDPI

Abstract

Antimicrobials serve as crucial treatments in both veterinary and human medicine, aiding in the control and prevention of infectious diseases. However, their misuse or overuse has led to the emergence of antimicrobial resistance, posing a significant threat to public health. This review focuses on extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and their associated food products, which contribute to the proliferation of antimicrobial-resistant strains. Recent research has highlighted the presence of ESBL-producing E. coli in animals and animal-derived foods, with some studies indicating genetic similarities between these isolates and those found in human infections. This underscores the urgent need to address antimicrobial resistance as a pressing public health issue. More comprehensive studies are required to understand the evolving landscape of ESBLs and to develop strategic public health policies grounded in the One Health approach, aiming to control and mitigate their prevalence effectively.

Research – Detection of Extended Spectrum ß-Lactamase-Producing Escherichia coli with Biofilm Formation from Chicken Meat in Istanbul

MDPI

Abstract

Antimicrobial resistance is one of the major public health problems worldwide. This study aimed to detect the presence of extended-spectrum β-lactamase-(ESBL-)producing Escherichia (E.coli in chicken meat in Istanbul, Türkiye. Raw chicken meat samples (n = 208) were collected from different sale points and analyzed for ESBL-producing E. coli. In total, 101 (48.5%) isolates were confirmed as E. coli by PCR, of which 80/101 (79.2%) demonstrated multiple antibiotic resistance. Resistance against amoxicillin-clavulanic acid was most frequent (87.1%). Eighteen isolates (17.8%) demonstrated phenotypical ESBL resistance, as assessed by the double disc synergy test (DDST). Isolates were tested for the presence of β-lactamase genes and mobilized colistin-resistant genes. The blaTEM group was most frequently detected (97.02%), followed by blaCTX m (45.5%), blaSHV (9.9%), and blaOXA-2 (0.9%). However, mcr genes and blaNDM, blaKPCblaVIM, and blaOXA-48 genes were not found in any isolate. E. coli strains were tested for biofilm formation in six different media [Nutrient broth, LB broth, Tryptone Soya broth (TSB), TSB containing 1% sucrose, TSB containing 0.6% yeast extract, and BHI]. Biofilm formation by E. coli isolates (44/101, 43.5%) was highest in TSB with 1% sucrose. It is worth noting that all biofilm-producing isolates were found to harbor the blaTEM-1 gene, which can indicate a high level of antibiotic resistance. This is the first report about ESBL-producing E. coli in poultry meat, the exposure of consumers in Istanbul metropolitan areas, and the ability of E. coli from this region to produce biofilms.