Carnegie Mellon University researchers have identified a molecule that plays a key role in bacterial communication and infection. Their findings add a new word to pneumococcus’ molecular dictionary and may lead to novel ways to manipulate the bacteria and prevent infection. The findings, from the lab of Associate Professor of Biological Sciences Luisa Hiller, are published in the Oct. 11 issue of PLOS Pathogens.
Organisms worldwide communicate in their own unique ways: humans use words, bees dance, and fireflies glow. Decoding a community’s common language provides the ability to understand and influence the community’s behavior.
What if bacteria also have their own language? If we understood that syntax, could we simply ask the bacteria to stop making us sick?
These questions are at the core of Hiller’s research. Her lab is investigating “bacterial linguistics,” attempting to identify the “words” that bacteria use to communicate. They hope to assemble a dictionary that will give researchers the vocabulary they need to manipulate deadly pathogens.
The Hiller lab is unraveling how bacterial communication contributes to disease and antibiotic resistance, focusing on the bacterium pneumococcus.
