Antibiotic resistance is a global problem. The World Health Organisation (WHO) estimates that for tuberculosis alone multi-drug resistance accounts for more than 150,000 deaths each year. WHO warns of “a doomsday scenario of a world without antibiotics,” in which antibiotic resistance will turn common infections into incurable killers and make routine surgeries a high-risk gamble.
Certain types of bacteria are a scourge of the hospital environment because they are extremely resistant to antibiotics and consequently difficult, if not impossible, to treat. This group of bacteria is classified as ‘gram-negative’ because their cells have a double membrane or outer layer, compared with gram-positive bacteria, which just have one outer layer.
Since the antibiotic is an interfering agent, many of these pathogenic bacteria use the membrane pumps to transport the medication out of the cell.
“By investigating how these pumps function, we have been able to identify the molecular events that are involved in binding and transporting an antibiotic from the cell. This advance in our understanding will ultimately aid the development of ‘pump blockers’. This is important because these pumps often confer resistance to multiple, structurally unrelated, drugs; which means that they could also be resistant to new drugs which have never been used before.”

Skin secretions found in Australian frogs may hold the key to designing powerful new antibiotics that are not prone to bacterial resistance in humans, say researchers.
Thank you for the link